
CALSPAN

RBSIIARCH CENTER

Development of an Integrated BEM Approach

for Hot Fluid Structure Interaction

Annual Report

November 1989- November 1990

Grant :_ NAG3-'rI2

Prepared by:

G.F. Dargush
P.K. Banerjee

Y. Shi

Department of Civil Engineering
State University of New York at Buffalo

Prepared for:

National Aeronautics and Space Administration
Lewis Research Center

21000 Brookpark Road
Cleveland, Ohio 44135

CALSPAN-UB RESEARCH CENTER P.O. BOX 400, BUFFALO, NEW YORK 14225 TEL, (716) 631-6900



LIST OF CONTENTS

Page

1. Introduction ................................................................................ 1

2. Literature Review ........................................................................ 4

3. Integral Formulation for Solids ...................................................... 6

3.1 Introduction ............................................................................. 6

3.2 Governing Equations ................................................................... 6

3.3 Integral Representations ............................................................... 7
3.4 Numerical Implementation ............................................................. 8
3.5 Numerical Examples .................................................................. 21
3.6 Summary ............................................................................... 23

4. Integral Formulation for Fluids ..................................................... 28

4.1
4.2

Introduction ............................................................................ 28

Incompressible Thermoviscous Flow. ............................................... 28
4.2.1 Introduction .................................................................... 28

4.2.2 Governing Equations .......................................................... 29
4.2.3 Integral Representations ...................................................... 30
4.2.4 Numerical Implementation ................................................... 32
4.2.5 Numerical Examples .......................................................... 42

5O4.2.6 Summary .......................................................................
4.3 Convective Incompressible Thermoviscous Flow ................................... 50

4.3.1 Introduction .................................................................... 50

4.3.2 Governing Equations .......................................................... 51
4.3.3 Fundamental Solutiorls .......... .............................................. 51

4.3.4 Integral Representations ...................................................... 53
4.3.5 Numerical Implementation ................................................... 54
4.3.6 Numerical Examples .......................................................... 56
4.3.7 Summary ....................................................................... 60

4.4 Convective Compressible Thermoviscous Flow .................................... 61
4.4.1 Introduction .................................................................... 61

4.4.2 Governing Equations .......................................................... 62
4.4.3 Fundamental Solutions ........................................................ 63

4.4.4 Integral Representations ...................................................... 64
4.4.5 Summary ....................................................................... 65

5. Fluid-Structure Interaction ......................................................... 114

5.1 Introduction ........................................................................... 114
5.2 Formulation ........................................................................... 114

5.3 Numerical Implementation .......................................................... 116
5.4 Numerical Examples ................................................................. 116

6. BEM for Related Physical Phenomena ......................................... 138



7. Summary ................................................................................. 140

8. Future Direction ....................................................................... 142

APPENDIX A - References
APPENDIX B.1 - Kernels for Thermoelasticity
APPENDIX B.2 - Kernels for Steady Incompressible Thermoviscous Flow
APPENDIX B.3 - Kernels for Unsteady Incompressible Viscous Flow
APPENDIX B.4 - Kernels for Steady Convective Incompressible Viscous Flow
APPENDIX B.5 - Kernels for Steady Convective Compressible Thermoviscous Flow



1. INTRODUCTION

As part of the continuing effort at NASA/Lewis to improve both the durability and

reliability of hot sectionEarth-to-Orbit enginecomponents,significantenhancementsmust

bemadein existing finite elementand finite differencemethods,and advancedtechniques,

suchasthe boundary elementmethod, must be explored. Despite this considerableeffort,

the accuratedetermination of transient thermal stressesin thesehot section components

remainsone of the most difficult problemsfacing engine design/analysts. For theseprob-

lems, the temperature distribution is strongly influenced by the external hot gas flow,

the internal cooling system, and the structural deformation. Currently, experimentally-

determined film coefficientsand ambient temperaturesare required for useas boundary

conditions for the thermal stressanalysisof the structural component. The determina-

tion of thesecoefficientsis obviously an expensiveand time-consumingtask. Recentlyan

attempt wasmade by Gladden (1989) to usea finite difference-basedNavier-Stokescode

to approximate the thermal boundary conditions, and to then input these into a finite

element structural analysispackage. However, the most effective way to deal with this

problem is to developa completely integrated solid mechanics,fluid mechanics,and heat

transfer approach.

In the present work, the boundary element method (BEM) is chosenas the basic

analysis tool principally becausethe critical surfacevariables(i.e., temperature, flux, dis-

placement,traction) canbevery preciselydeterminedwith aboundary-baseddiscretization

scheme.Additionally, model preparation is considerablysimplified comparedto the more

familiar domain-basedmethods. Furthermore, the hyperbolic characterof high speedflow

is captured through the useof an analytical fundamental solution, eliminating the depen-

denceof the solution on the discretization pattern. The price that must be paid in order

to realize theseadvantagesis that any BEM formulation requiresa considerableamount

of analytical work, which is typically absentin the other numerical methods.
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This report details all of the research accomplishments of a multi-year program, com-

mencing in March 1986, aimed toward the development of a boundary element formulation

for the study of hot fluid-structure interaction in Earth-to-Orbit engine hot section com-

ponents. It should be noted that this work represents approximately four man-years of

funding from NASA/Lewis. Most of that effort expended under this program has been di-

rected toward the examination of fluid flow, since boundary element methods for fluids are

at a much less developed state. Recently, however, significant strides have been made, not

only in the analysis of thermoviscous fluids, but also in the solution of the fluid-structure

interaction problem.

Early in the research program, a two-dimensional boundary element formulation was

developed for the time-dependent response of a thermoelastic solid. This effort resulted

in the first time domain, boundary-only implementation for this class of problems. Since

volume discretization is completely eliminated and surface transient thermal stresses can

be captured very accurately, the new approach provides distinct advantages over standard

finite element methods.

Meanwhile, the initial fluid formulations that were developed, based upon Stokes fun-

damentai solutions, provided solutions in the low-to-moderate Reynolds number range.

For creeping flow, these reduce to boundary-only techniques. As the fluid velocities are in-

creased, volume discretization is required, however the solutions are typically very precise,

particularly in the determination of surface quantities. At very high speed, these formu-

lations are less effective, because the Stokes fundamental solutions no longer embody the

character of the flow field which becomes dominated by convection.

This led to the development of convective viscous integral formulations based upon Os-

een fundamental solutions. Since the new convective kernel functions, that were developed

as a part of this effort, contain more of the physics of the problem, boundary element so-

lutions can now be obtained at very high Reynolds number. Flow around obstacles can be

solved approximately with an efficient linearized boundary-only analysis or more exactly



by including all of the nonlinearities present in the neighborhoodof the obstacle. This

perhaps representsthe major accomplishmentof the presentprogram.

The other significant developmenthas been the creation of a comprehensivefluid-

structure interaction capability within a boundary element computer code. This new

facility is implementedin a completelygeneralmanner, so that quite arbitrary geometry,

material properties and boundary conditions may be specified. Thus, a single analysis

code can be used to run structures-only problems, fluids-only problems,or the combined

fluid-structure problem. In all three cases, steady or transient conditions can be selected,

with or without thermal effects. Nonlinear analyses can be solved via direct iteration or by

employing a modified Newton-Raphson approach. However, it should be emphasized that

the existing program is primarily a research code. Significant additional effort is needed

to develop a practical engineering analysis tool.

In the next section, a brief review of the recent applicable boundary element literature

is presented. This is followed by the development of integral formulations for the ther-

moelastic solid in Section 3 and for the thermoviscous fluid in Section 4. A number of

detailed numerical examples are included at the end of these two sections to validate the

formulations and to emphasize both the accuracy and generality of the implementation.

Then, in Section 5, the fluid-structure interaction facility is discussed. Once again, several

examples are provided to highlight this unique capability. It should be noted that all of

the results presented in this report were run on a desktop SUN SPARCstation 1. Section 6

contains a collection of potential boundary element applications that have been uncovered

as a result of work related to the present grant. For most of those problems, satisfactory

analysis techniques do not currently exist. The remaining sections summarize the progress

achieved to date, and specify the future direction. Tables and figures appear at the end of

each section, while references are provided in Appendix A.



2. LITERATURE REVIEW

Very little hasappearedin the literature on the analysisof coupledthermoviscousfluid-

structure problemsvia the boundary elementmethod. However,a number of publications

haveaddressedthe fluid and structure separately.

In general, the solid portion of the problem has been addressedto a much greater

degree.For example,a boundary-only steady-statethermoelasticformulation was initially

presentedby Cruse et al (1977) and Rizzo and Shippy (1977). Recently, the present

authors developedand implementedthe quasistatic counterpart (Dargush, 1987;Dargush

and Banerjee,1989b, 1990a,1990b),which is presentedin detail in Section 3. Others,

notably Sharp and Crouch (1986)and Chaudouet (1987),introduce volume integrals, to

representthe equivalent thermal body forces. A similar domain basedapproachwastaken

earlier by Banerjeeand Butterfield (1981) in the context of the analogousgeomechanical

problem.

An extensivereview of the applicationsof integral formulations to viscousflow prob-

lems was included in a previous annual report (Dargush et al, 1987), and will not be

repeatedhere. Interestingly, only a few groups of researchersare actively pursuing the

further developmentof boundary elementsfor the analysisof viscousfluids. The work re-

ported in Piva and Morino (1987)and Pivaet al (1987)focusesheavily on the development

of fundamental solutionsand integral formulations with little emphasison implementation.

On the other hand, Tosakaand Kakuda (1986,1987),Tosakaand Onishi (1986)have im-

plementedsingle regionboundary elementformulationsusing approximate incompressible

fundamental solutions. This latter group hasdevelopedsophisticatednon-linear solution

algorithms, and consequently,are able to demonstratemoderately high Reynolds num-

ber solutions. Meanwhile,Dargush and Banerjee(1991a,1991b)presentgeneralpurpose

steady and time-dependentboundary element methods for moderate Reynolds number

flows.



The most recent work from the above researchers has been collected into a volume en-

titled Developments in BEM - Volume 6: Nonlinear Problems of Fluid Dynamics, edited

by Banerjee and Morino. Contributions from Wu and Wang, and Bush and Tanner are also

included, along with two chapters from the present co-authors. The volume, published by

Elsevier Applied Science Publishers became available in mid-1990, and provides a state-

of-the-art review of boundary element fluid dynamics. However, it should be noted that

the convective thermoviscous formulations of Section 4 are not included. These represent

a significant further advancement which permit solutions for high Reynolds number flows.

Interestingly, the basis for much of this latter development is actually work done early in

this century by Oseen (1911, 1927).

For analysis of the interaction problem, a boundary element thermoelastic solid repre-

sentation must be coupled with a suitable thermoviscous fluid formulation. Only Dargush

and Banerjee (1988,1989a) have tackled this problem. These two papers provide a sum-

mary of the early work performed under this grant.



3. INTEGRAL FORMULATION FOR SOLIDS

3.1 Introduction

In the current section, a surface only time domain boundary element method (BEM)

will be described for a thermoelastic body under quasistatic loading. Thus, transient heat

conduction is included, but inertial effects are ignored. This BEM was first developed as

part of the work performed during the second year (1987) of this grant. Since that time a

number of improvements and extensions have been incorporated. During 1989, the algo-

rithms for numerical integration have been made more e_cient as well as more accurate,

and a comprehensive PATRAN interface has been added to aid in the post-processing of

the boundary element results. Additionally, a streamlined approach for uncoupled ther-

moelasticity was introduced (Dargush and Banerjee, 1989b). In 1990, boundary elements

with a quartic variation of the field variables were implemented. These elements are par-

ticularly well suited for problems involving the bending of components (Deb and Banerjee,

1989).

Details of the integral formulation for 2D plane strain is presented below. (Problems

of plane stress can be handled via a simple change in material parameters.) Separate sub-

sections present the governing differential equations, the integral equations, an overview

of the numerical implementation, and a couple of simple examples. Similar formulations

have also been developed for three-dimensional (Dargush and Banerjee, 1990a) and ax-

isymmetric problems (Dargush and Banerjee, 1990b).

3.2 Governing Equations

With the solid assumed to be a linear thermoelastic medium, the governing differential

equations for transient thermoelasticity can be written

02uj 02ui 00

O0 = k 020 (3.1b)
pc, _-[ Oxj Oz3
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where

ui displacement vector

6 temperature

t time

z_ Lagrangian coordinate

k thermal conductivity

p mass density

c_ specific heat at constant deformation

,X,p Lain@ constants

a coefficient of thermal expansion

Standard indicial notation has been employed with summations indicated by repeated

indices. For two-dimensional problems considered herein, the Latin indices i and j vary

from one to two.

Note that (3.1b) is the energy equation and that (3.1a) represents the momentum

balance in terms of displacements and temperature. The theory portrayed by the above

set of equations, formally labeled uncoupled quasistatic thermoelasticity, can be derived

from thermodynamic principles. (See Boley and Weiner (1960) for details.) In developing

(3.1), the dynamics effects of interia have been ignored.

3.3 Integral Representations

Utilizing equation (3.1) for the solid along with a generalized form of the reciprocal

theorem, permits one to develop the following boundary integral equation:

c_a(_)u_((,t) = j$ [g_a *$_(X,g)-f_c,* u_(X,Q] dS(X). (3.2)

where

a, ¢ indices varying from 1 to 3

s surface of solid



uo, ta generalized displacement and traction

_o=[_i _2 e]r

to = [tl t2 q]T

8, q temperature, heat flux

go_,f_ generalizeddisplacement and traction kernels

c_ constants determined by the relative smoothness of s at

and, for example

denotes a Riemann convolution integral. The kernel functions go_ and fo_ are derived from

the fundamental infinite space solutions of (3.1).

In principle, at each instant of time progressing from time zero, this equation can be

written at every point on the boundary. The collection of the resulting equations could then

be solved simultaneously, producing exact values for all the unknown boundary quantities.

In reality, of course, discretization is needed to limit this process to a finite number of

equations and unknowns. Techniques useful for the discretization of (3.2) are the subject

of the following section.

3.4 Numerical Implementation

3.4.1 Introduction

The boundary integral equation (3.2), developed in the last section, is an exact state-

ment. No approximations have been introduced other than those used to formulate the

boundary value problem. However, in order to apply (3.2) for the solution of practical en-

gineering problems, approximations are required in both time and space. In this section,

an overview of a general-purpose, state-of-the-art numerical implementation is presented.

Many of the features and techniques to be discussed, in this section, were developed previ-

ously for elastostatics (e.g., Banerjee et al, 1985, 1988), and elastodynamics (e.g., Banerjee

et al, 1986; Abroad and Banerjee, 1988), but are here adapted for thermoelastic analysis.
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3.4.2 Temporal Discretization

Consider, first, the time integrals represented in (3.2) as convolutions. Clearly, without

any loss of precision, the time interval from zero to t can be divided into N equal increments

of duration At.

By assuming that the primary field variables, tp and up, are constant within each At

time increment, these quantities can be brought outside of the time integral. That is,

N rn&t

g#a*tp(X,t)= _-_t_(X)[ gp_(X-(,t-r)dr (3.3a)
n--l_J(n-1)&t

N nat

fp,_ • up(X, t) = _ u_(X) [ fp,_(X - _, t - r)dr (3.3b)
n=l J(n--1)&t

where the superscript on the generalized tractions and displacements, obviously, represents

the time increment number. Notice, also, that, within an increment, these primary field

variables are now functions of position only. Next, since the integrands remaining in

(3.3) are known in explicit form from the fundamental solutions, the required temporal

integration can be performed analytically, and written as

/.nAt

GN+I--n(Xga t --() = J(n[-1)Z_,t 9pa(X --(,t- r)dr
(3.4a)

n_t
F_2_-"(x - _) = _(--_)_t bo(X - _,t - _)_.

(3.4b)

These kernel functions, G_(X -() and F_%(X -(), are detailed in Appendix B.1. Combining

(3.3) and (3.4) with (3.2) produces

N xE f, - dS(X), (3.5)

which is the boundary integral statement after the application of the temporal discretiza-

tion.



3.4.3 Spatial Discretization

With the use of generalized primary variables and the incorporation of a piecewise

constant time stepping algorithm, the boundary integral equation (3.5) begins to show

a strong resemblance to that of elastostatics, particularly for the initial time step (i.e.,

2v = x). In this subsection, those similarities will be exploited to develop the spatial

discretization for the uncoupled quasistatic problem with two-dimensional geometry. This

approximate spatial representation will, subsequently, permit numerical evaluation of the

surface integrals appearing in (3.5). The techniques described here, actually, originated in

the finite element literature, but were later applied to boundary elements by Lachat and

Watson (1976).

The process begins by subdividing the entire surface of the body into individual ele-

ments of relatively simple shape. The geometry of each element is, then, completely defined

by the coordinates of the nodal points and associated interpolation functions. That is,

X(() = ¢,(() = Nw(()¢ito (3.6)

with

( intrinsic coordinates

N_ shape functions

zi_ nodal coordinates

and where w is an integer varying from one to W, the number of geometric nodes in the

element. Next, the same type of representation is used, within the element, to describe

the primary variables. Thus,

ii n= (3.7,,)

in which u2_ and t_ are the nodal values of the generalized displacement and tractions,

respectively, for time step n. Also, in (3.7), the integer ,o varies from one to f/, the total

10



number of functional nodes in the element. From the above, note that the same number

of nodes, and consequently shape functions, are not necessarily used to describe both the

geometric and functional variations. Specifically, in the present work, the geometry is

exclusively defined by quadratic shape functions. In two-dimensions, this requires the use

of three-noded line elements. On the other hand, the variation of the primary quantities can

be described, within an element, by linear, quadratic or quartic shape functions. For each

quartic element, two additional quarter-point nodes are automatically generated by the

program. It should be noted that the introduction of quartic elements this past year, also

provides the foundation for the development of a p-adaptive boundary element capability.

Once the spatial discretization has been accomplished and the body has been subdi-

vided into M elements, the boundary integral equation can be rewritten as

n:l _:1 ,,n

(3S)
J )

where
M

S = _'-_ S_.
rn_l

In the above equation, t_, o and u_ are nodal quantities which can be brought outside the

surface integrals. Thus,

nml rr*=l '_

- j,.F;':'--(x/o- (,.o)

The positioning of the nodal primary variables outside the integrals is, of course, a key

step since now the integrands contain only known functions. However, before discussing

the techniques used to numerically evaluate these integrals, a brief discussion of the sin-

gulaxities present in the kernels G'_ and F_ is in order.pa

The fundamental solutions to the uncoupled quasistatic problem contain singularities

when the load point and field point coincide, that is, is when r = 0. The same is true of G_o

11



madF_,, since these kernels axe derived directly from the fundamental solutions. Series

expansions of terms present in the evolution functions can be used to deduce the level of

singularities existing in the kernels.

A number of observations concerning the results of these expansions should be men-

tioned. First, as would be expected F_Z has a stronger level of singularity than does the

corresponding G_, since an additional derivative is involved in obtaining F_z from 1Ga_.

Second, the coupling terms do not have as a high degree of singularity as do the corre-

sponding non-coupling terms. Third, all of the kernel functions for the first time step could

actually be rewritten as a sum of steady-state and transient components. That is,

Then, the singularity is completely contained in the steady-state portion. Furthermore,

the singularity in Gi½ and Fi15is precisely equal to that for elastostatics, while a_o and F_o

singularities are identical to those for potential flow. (For two-dimensions, the subscript

0 equals three.) This observation is critical in the numerical integration of the F,_O kernel

to be discussed in the next subsection. However, from a physical standpoint, this means

that, at any time t, the nearer one moves toward the load point, the closer the quasistatic

response field corresponds with a steady-state field. Eventually, when the sampling and

load points coincide, the quasistatic and steady-state responses are indistinguishable. As

a final item, after careful examination of Appendix B.1, it is evident that the steady-state

components in the kernels a '_ and F2_ , with n > 1 vanish. In that case, all that remainsaft

is a transient portion that contains no singularities. Thus, all singularities reside in the

"'Goz mad _'F_ components of G_z and F_¢, respectively.

3.4.4 Numerical Integration

Having clarified the potential singularities present in the coupled kernels, it is nov,,

possible to consider the evaluation of the integrals in equation (3.9). That is, for any

12



elementm, the integrMs

Jfs_ GN+I-'_(X(_) - _)N'_(I)dS(X(_)) (3.10a)

FN+I-"(X(¢) - (3.10b)

will be examined. To assist in this endeavor, the following three distinct categories can be

identified.

(1) The point _ does not lie on the element m.

(2) The point _ lies on the element rn, but only non-singular or weakly singular integrals

are involved.

(3) The point _ lies on the element m, and the integral is strongly singular.

In practical problems involving many elements, it is evident that most of the integration

occurring in equation (3.9) will be of the category (1) variety. In this case, the integrand is

always non-singular, and standard Gaussian quadrature formulas can be employed. Sophis-

ticated error control routines are needed, however, to minimize the computational effort

for a certain level of accuracy. This non-singular integration is the most expensive part of

a boundary element analysis, and, consequently, must be optimized to achieve an efficient

solution. In the present implementation, error estimates, based upon the work of Stroud

and Secrest (1966), are employed to automatically select the proper order of the quadrature

rule. Additionally, to improve accuracy in a cost-effective manner, a graded subdivision

of the element is incorporated, especially when _ is nearby. For two-dimensional prob-

lems, the integration order varies from two to twelve, within each of up to four element

subdivisions.

Turning next to category (2), one finds that again Gaussian quadrature is applicable,

however, a somewhat modified scheme must be utilized to evaluate the weakly singular

integrals. This is accomplished in two-dimensional elements via suitable subsegmentation

along the length of the element so that the product of shape function, 3acobian and kernel

remains well behaved.

13



Unfortunately, the remaining strongly singular integralsof category (3) exist only in

the Cauchyprincipal value senseand cannot, in general,be evaluatednumerically, with

sufficientprecision. It shouldbenoted that this apparentstumbling block is limited to the

strongly singularportions, 8'F_and "'Fee,of the F_p kernel. The remainder of F_Z, including

trF_ and trFg0, can be computed using the procedures outlined for category (2). However,

as will be discussed in the next subsection, even category (3) "sF_. and *SF0e kernels can be

accurately determined by employing an indirect 'rigid body' method originally developed

by Cruse (1974).

3.4.5 Assembly

The complete discretization of the boundary integral equation, in both time and space,

has been described, along with the techniques required for numerical integration of the

kernels. Now, a system of algebraic equations can be developed to permit the approximate

solution of the original quasistatic problem. This is accomplished by systematically writing

(3.9) at each global boundary node. The ensuing nodal collocation process, then, produces

a global set of equations of the form

N

n=l

where

[G N+l-n] unassembled matrix of size (d + 1)P × (d + 1)Q, with coefficients determined

from (3.10a)

[F N+I-"] assembled matrix of size (d+l)P × (d+ 1)P, with coefficients determined from

(3.10b) and cz_ included in the diagonal blocks

{_") global generalized nodal traction vector with (d + 1)Q components

{u '_) global generalized nodal displacement vector with (d + ])P components

{0} null vector with (d + 1)P components

P total number of global functional nodes

14



M
Q = _-_m=l Am

Am number of functional nodes in element m

d dimensionality of the problem.

In the above, recall that the terms generalized displacement and traction refer to the

inclusion of the temperature and flux, respectively, as the (d + 1) component at any point.

Consider, now, the first step. Thus, for N = 1, equation (3.11) becomes

[G1]{t 1} - [F1]{u 1 } = {0}. (3.12)

However, at this point the diagonal block of IF 1] has not been completely determined due to

the strongly singular nature of 'sF_ and 8"Fe0. Following Cruse (1974) and, later, Banerjee

et al (1986) in elastodynamics, these diagonal contributions can be calculated indirectly

by imposing a uniform 'rigid body' generalized displacement field on the same body, but

under steady-state conditions.

and

Then, obviously, the generalized tractions must be zero,

['SF]{1} = {0}, (3.13)

where {1} is a vector symbolizing a unit uniform motion. Using (3.13), the desired diagonal

blocks, "F_j and "Foe, can be obtained from the summation of the off-diagonal terms of

[°_F]. The remaining transient portion of the diagonal block is non-singular, and hence

can be evaluated to any desired precision. After summing the steady-state and transient

contributions, (3.12) is once again written as

[G1]{t 1} - [F1]{u l} = {0], (3.14)

but now the evaluation of [F 1] is complete.

In a well-posed problem, at time At, the set of global generalized nodal displacements

and tractions will contain exactly (d+ I)P unknown components. Then, as the final stage

in the assembly process, equation (3.14) can be rearranged to form

1}= [B*]{Vl), (3.a5)

15



in which

{z 1} unknown components of {u 1} and {t 1}

{yl} known components of {u 1} and {t 1}

[A1], [B 1] associated matrices

3.4.6 Solution

To obtain a solution of (3.15) for the unknown nodal quantities, a decomposition

of matrix [A1] is required. In general, [A1] is a densely populated, unsymmetric matrix.

The out-of-core solver, utilized here, was developed originally for elastostatics from the

LINPACK software package (Dongarra eta/, 1979) and operates on a submatrix level.

Within each submatrix, Gaussian elimination with single pivoting reduces the block to

upper triangular form. The final decomposed form of [A 1] is stored in a direct-access file

for reuse in subsequent time steps. Backsubstitution then completes the determination of

{=:1}. Additional information on this solver is available in Banerjee et al (1985).

After turning from the solver routines, the entire nodal response vectors, {u 1} and

{tl}, at time At are known. For solutions at later times, a simple marching algorithm is

employed. Thus, from (3.11) with g = 2,

[G_]{__} - [rl]{_ _} + [v_]{t2}- [y']{_ _}= {0}. (3.16)

Assuming that the same set of nodal components are unknown as in (3.14) for the first

time step, equation (3.16) is reformulated as

[A,]{x=}= [Bll{y=}_ [e_]{_} + [y=]{,_}. (_.17)

Since, at this point, the right-hand side contains only known quantities, (3.17) can be

solved for {x=}. However, the decomposed form of [A1] already exists on a direct-access file,

so only the relatively inexpensive backsubstitution phase is required for the solution.

The generalization of (3.17) to any time step N is simply

[A1]{x N} = [B1]{y N} _ __, [GN+I-r_I{t n} --[FN+I-'_I{u '_} (3.18)
n----I

16



in which the summation represents the effect of past events. By systematically storing

all of the matrices and nodal response vectors computed during the marching process,

surprisingly little computing time is required at each new time step. In fact, for any

time step beyond the first, the only major computational task is the integration needed

to form [G N] and [FN]. Even this process is somewhat simplified, since now the kernels

are non-singular. As a result, reduced subsegmentation and gaussian integration order is

appropriate. Also, as time marches on, the effect of events that occurred during the first

time step diminishes. Consequently, the terms containing [Gn] and [F N] will eventually

become insignificant compared to those associated with recent events. Once that point is

reached, further integration is unnecessary, and a significant reduction in the computing

effort per time step can be achieved.

It should be emphasized that the entire boundary element method developed, in this

section, has involved surface quantities exclusively. A complete solution to the well-posed

linear uncoupled quasistatic problem, with homogeneous properties, can be obtained in

terms of the nodal response vectors, without the need for any volume discretization. In

many practical situations, however, additional information, such as, the temperature at

interior locations or the stress at points on the boundary, is required. The next subsection

discusses the calculations of these quantities.

3.4.7 Interior Quantities

Once equation (3.18) is solved, at any time step, the complete set of primary nodal

quantities, {u n} and {tN}, is known. Subsequently, the response at points within the body

can be calculated in a straightforward manner. For any point _ in the interior, the gener-

alized displacement can be determined from (3.9) with c_,_ = 6_o. That is,

{ - a 1--(xN) _)N_(C)dS(X(C))
n=l rn=l m

Now, all the nodal variables on the right-hand side are known, and, as long as, _ is not on
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the boundary,the kernelfunctions in (3.19)remainnon-singular. However,when( ison the

boundary, the strong singularity in aSF0,prohibits accurateevaluation of the generalized

displacementvia (3.19), and an alternate approachis required. The apparentdilemma is

easily resolvedby recalling that the variation of surfacequantities is completely defined

by the elemental shapefunctions. Thus, for boundary points, the desiredrelationship is

simply

u_(() = g,_(()u N (3.20)

where N,_(() are the shape functions for the appropriate element and ( are the intrinsic

coordinates corresponding to ( within that element. Obviously, from (3.20), neither in-

tegration nor the explicit contribution of past events are needed to evaluate generalized

boundary displacements.

In many problems, additional quantities, such a heat flux and stress, are also important.

The boundary integral equation for heat flux, can be written

N M

_. Ego i (X(()- ()N.(()dS(X(())

- uZ_ Dze{ (X (()- ()Nw(()dS(X(()) . (3.21)
rn

where

E gX(O - = -koa o(x(O- ()
O(i (3.21a)

D_oi(X(¢ ) - _) = _kOY_ °(X(() - () (3.21b)

This is valid for interior points, whereas, when ( is on the boundary, the shape functions

can again be used. In this latter case,

g (Oq = (3.22.)

10z{ N
ON_')oN _ i _-qi ((), (3.22b)

which can be solved for boundary flux. Meanwhile, interior stresses can be evaluated from

aiJ(()= Z_ E_i] (X(()- ()N_(()dS(X(())
n----1 rrl_. 1 m

- " DZ,j (X(()- ()N_(<)dS(X(()) (3.23)
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in which

- - + _ \--g-C + "5-((/ -

(3.23a)

(3.23b)

with r, representing the Poisson ratio and Z = (3_ + 2p)a. Equation (3.23) is, of course,

developed from (3.19). Since strong kernel singularities appear when (3.23) is written for

boundary points, once again an alternate procedure is needed to determine surface stress.

This alternate scheme exploits the interrelationships between generalized displacement,

traction, and stress and is the straightforward extension of the technique typically used in

elastostatic implementation (Cruse and Van Buren, 1971). Specifically, the following can

be obtained

nj(_)aN(_) = t N (3.24a)

N
aN(_) _ D_Jkl uk,Z(_) + uNk(_) = -fl6iJN_(_)uoN_T

8Xj N -" ON,_ N

in which N is obviously the nodal temperatures, and,
tt0w

(3.24b)

(3.24c)

D_j k, = A6_jSkt + 2#6_k6j_.

a 0 (_) and u_(_)Equations (3.24) form an independent set that can be solved numerically for g

completely in terms of known nodal quantities ?2N_ and to_,N without the need for kernel

integration nor convolution. Notice, however, that shape function derivatives appear in

(3.24c), thus constraining the representation of stress on the surface element to something

less than full quadratic variation. The interior stress kernel functions, defined by (3.23),

are also detailed in Appendix B.1.

3.4.8 Advanced Features

The thermoelastic formulation has been implemented as a segment of the state-of-the-

art, general purpose boundary element computer program, GP-BEST. Consequently, many
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additional features, beyond those detailed above, are available for the analysis of complex

engineering problems. Perhaps, the most significant of these items, is the capability to

analyze substructured problems. This, not only extends the analysis to bodies composed of

several different materials, but also often provides computational efficiencies. An individual

substructure or geometric modeling region (GMR) must contain a single material. During

the integration process, each GMR remains a separate entity. The GMR's are then brought

together at the assembly stage, where compatibility relationships are enforced on common

boundaries between regions. Typically, compatibility ensures continuous displacement and

temperature fields across an interface, however, recent enhancements to the code permit

sliding between regions, spring contacts and interracial thermal resistance to model air

gaps or coating resistances. In the latter instances, discontinuities appear at the interface.

In any case, the multi-GMR assembly process produces block-banded system matrices that

are solved in an efficient manner.

As another feature, a high degree of flexibility is provided for the specification of bound-

ary conditions. In general, time-dependent values can be defined in either global or local

coordinates. Not only can generalized displacements and tractions be specified, but also

spring and convection boundary conditions are available. Another recent addition permits

time-dependent ambient temperatures. A final item, worthy of note, is the availability of

a comprehensive symmetry capability which includes provisions for both planar and cyclic

symmetry.

During the past two years, an interface to the well-known PATRAN graphics package

was developed and enhanced. This interface allows the user an option to view deformed

shapes, temperatures and stress boundary profiles or contours. A number of PATRAN-

produced illustrations are included throughout this report. In the next section, a couple of

examples are presented to demonstrate the validity and applicability of this boundary-only

formulation.
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3.5 Numerical Examples

3.5.1 Sudden Heating of Aluminum Block

As a first example, transient heating of an aluminum block is examined under plane

strain conditions. The block, shown in Figure 3.1, initially rests in thermodynamic equi-

librium at zero temperature. Then, suddenly, the face at Y = 1.0 in. is elevated to 100°F,

while the remaining three faces are insulated and restrained against normal displacements.

Thus, only axial deformation in the Y-direction is permitted. Naturally, as the diffusive

process progresses, temperature builds along with the lateral stresses ax_ and az_. To com-

plete the specification of the problem, the following standard set of material properties are

used to characterize the aluminum:

E = 10 x 106psi, v = 0.33,

c_= 13 × lO-6/°F,

k = 25in.lb./sec.in.°F, pc_ = 200in.lb./in.3°F.

The two-dimensional boundary element idealization consists of the simple four element,

eight node model included in Figure 3.1. A time step of 0.4 sec. is selected, corresponding

to a non-dimensional time step of 0.5. Additionally, a finite element analysis of this same

problem was conducted using a modified thermal version of the computer code CRISP

(Gunn and Britto, 1984). The finite element model is also a two-dimensional plane strain

representation, however, sixteen linear strain quadrilaterals are placed along the diffusion

length. In the FE run, a time step of 0.2 sec. is employed.

Temperatures, displacements, and stresses are compared in Table 3.1. Notice that the

boundary element analysis, with only one element in the flow direction, produces a better

time-temperature history than does a sixteen element FE analysis with a smaller time

step. Both methods exhibit greatest error during the initial stages of the process. This is

the result of the imposition of a sudden temperature change. Meanwhile, the comparison

of the overall axial displacement indicates agreement to within 3°_ for the BE analysis

and 5% for the FE run. A steady-state analysis via both methods produces the exact
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answerto three digit accuracy.The last comparison,in the table, involveslateral stresses

at an integration point in the FE model. The boundary elementresults are quite good

throughout the range, however, the FE stressesexhibit considerableerror, particularly

during the initial four seconds. Actually, these finite elementstress variations are not

unexpectedin light of the errors present in the temperature and displacement response.

Recall that in the standard finite element process, stresses are computed on the basis of

numerical differentiation of the displacements, whereas in boundary elements, the stresses

at interior points are obtained directly from a discretized version of an exact integral

equation. Consequently, the BE interior stress solution more nearly coincides with the

actual response.

3.5.2 Circular Disc

Next, transient thermal stresses in a circular disc are investigated. The disc of radius

%' initially rests at zero uniform temperature. The top and bottom surfaces are thermally

insulated, and all boundaries are completely free of mechanical constraint. Then, suddenly,

at time zero, the temperature of the entire outer edge (i.e., r = a) is elevated to unity and,

subsequently, maintained at that level.

The boundary element model of the disc with unit radius is shown in Figure 3.2. Only

four quadratic elements axe employed, along with quarter symmetry. Ten interior points are

also included strictly to monitor response. In addition, the following non-dimensionalized

material properties are arbitrarily selected for the plane stress analysis:

E = 1.333 pc_ = 1.0

u=0.333 k= 1.0

(_ = 0.75

Results obtained under quasistatic conditions for a time step of 0.005 are compared, in

Figures 3.3, 3.4 and 3.5, to the analytical solution presented in Timoshenko and Goodier

(1970). Notice that temperatures, as well as radial and tangential stresses are accurately

determined via the boundary element analysis. In particular from Figure 3.5, even the
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tangential stress on the outer edge is faithfully reproduced. An extremely fine finite element

mesh would be required to obtain a comparable level of accuracy, particularly, for the

surface stresses.

3.6 Summary

A comprehensive boundary element method has been presented for transient thermoe-

lastic analysis. This time-domain formulation requires discretization of only the surface of

the component, and thus provides an attractive alternative to finite element analysis for

this class of problems. In addition, steep thermal gradients, which often occur near the

surface, can be captured more readily, since with a boundary element approach there are

no shape functions to constrain the solution in the direction normal to the surface. For ex-

ample, the circular disc analysis indicates the high level of accuracy that can be obtained.

In fact, on the basis of reduced modeling effort and improved accuracy, it appears that the

present boundary element method should be the preferred approach for general problems

of transient thermoelasticity.
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TABLE 3.1

SUDDEN HEATING OF A CUBE

Time

(sec.)

0.8

1.6

2.4

3.2

4.0

4.8

5.6

6.4

7.2

8.0

Temperature (°F)
at Y=0

Exact FE BEM

4.7 3.4 3.8

22.0 19.8 20.7

38.3 36.4 37.7

51.5 50.0 51.5

61.9 60.7 62.2

70.1 69.1 70.5

76.5 75.7 76.9

81.5 80.9 81.9

85.5 84.9 85.8

88.6 88.2 88.8

Axial Displacement (p in.) Lateral Stress (ksi)
at Y = 1.o at Y = 0.5312

Exact FE BEM Exact FE BEM

910 860 920

1290 1250 1320

1570 1540 1610

1780 1760 1840

1950 1930 2000

-5.6 -3.9 -5.4

-9.1 -7.7 -9.2

-11.3 -10.3 -11.7

-13.1 -12.2 -13.5

-14.4 -13.8 -14.8

2090 2070 2130

2200 2180 2230

2280 2270 2310

2340 2330 2370

2400 2390 2410

-15.5 -15.0 -15.9

-16.3 -15.9 -16.7

-17.0 -16.7 -17.3

-17.5 -17.2 -17.8

-17.9 -17.7 -18.1
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4. INTEGRAL FORMULATION FOR FLUIDS

4.1 Introduction

Attention is now shifted to the hot fluid. A number of integral formulations will

be presented for both incompressible and compressible thermoviscous flow. In particular,

significant effort has been directed recently toward the development and implementation of

the convective formulations. As a result, boundary element solutions can now be obtained

in the high Reynolds number range.

The presentation is separated into the three classes, namely, incompressible, convective

incompressible and convective compressible flow. Individual subsections under each head-

ing present the governing equations, integral representations, numerical implementation

and numerical examples. It will be evident that significant progress has been made in the

development of boundary element methods for both incompressible cases. On the other

hand, for the compressible case, most of the effort has been necessarily directed toward

the derivation of new fundamental solutions, which capture the essential character of the

flow field.

4.2 Incompressible Thermoviscous Flow

4.2.1 Introduction

In the following, steady and time-dependent formulations are presented for relatively

slow incompressible flow. The primary variables in each case axe velocity, temperature,

traction and heat flux. This is the set of variables for which boundary conditions are

most readily defined, and for which the extension to three-dimensions is most easily ac-

complished. As will be seen, the individual formulations have much in common. The

major differences involve the fundamental solutions that are employed, and the treatment

of the contributions of past events. Both formulations have been implemented within the

computer code GP-BEST.
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4.2.2 Governing Equations

Application of the Principles of the Conservation of Mass, Momentum and Energy for

an incompressible thermoviscous fluid lead to the development of the following differential

equations:

where

zi Eulerian coordinate

t time

vi velocity vector

p pressure

0 temperature

p mass density

viscosity

k thermal conductivity

c, specific heat

Yi body force

¢ body source,

Or---!= o (4.1a)
Oxi

02 vl Op Dvi
IAOxjOXj OqTi P'_-_- + fi = 0 (4.1b)

020 DO

kOzjOxj pc_--_ + ¢ = 0 (4.1c)

and the operator

D 0 O (4.2)
D---7= O--f+ vj Oz_

represents a material time derivative. By introducing a constant free stream velocity u_

and a velocity perturbation u_, such that

vi = Ui + ui,

29

(4.3)



the governing equations can be rewritten as

Ou___i= 0 (4.4a)
Oxi

02ui bp cgu_ Oui Oui
- pu;=-_o j- + li = 0 (4.4b)P OxjOxj

P-_Oxi

u o_m and 0eNote that in equations (4.4) only the terms p Jo_: pc,ujg-_;_ are actually nonlinear,

although in some instances the body forces and sources may also contain nonlinearities. A

number of distinct integral formulations are possible, depending upon which of the linear

terms are included in the differential operator. All terms excluded from the differential

operator, must then be grouped together as effective body forces and sources, 1" and ¢',

respectively. Integral formulations based upon Stokes kernels are detailed in the next

subsection.

4.2.3 Integral Representations

4.2.3.1 Stead2fi

In this first formulation the time-dependent terms vanish, and the entire contribution

of the convective terms are considered as effective body forces and sources. Thus,

Oui Oui
f_ = -pUj Tzj - put _ + fi (4.5a)

O0 O0

As a result, the well-known fundamental solutions for incompressible Stokes flow and

steady-state heat conduction are applicable. The integral formulation, which can be de-

rived directly from the governing differential equation (Dargush and Banerjee, 1990c), can

be written

Is [aaZ¢_ - F_ou_ - O_fl°] dS + Iv [D_ka_ + Gc,ofo] dV (4.6)Cc,_tla
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where

ua: {ul u2 0] (4.7a)

to,= {Q t2 q} (4.7b)

fa = {fz f2 ¢} (4.7c)

axe generalized velocities, tractions, and body forces. In (4.7b), t{ are the surface tractions

defined by

ti = r_jnj - pni (4.8a)

with m representing the local unit outward normal to the surface s, and ro the fluid

stresses, while the heat flux is defined via

00
q = -k-_xini.

Furthermore,

(4.8b)

0] [Co0] 0]cap = Ga_ = , Fa_ = J (4.9a, b, c)
ceo ' Gee Fee

OG,_e (4.9d)
D,_k- Ozk

In the terminology of Lighthill (1952), a_i is the momentum flux tensor or fluctuating

Reynolds stress. Here, _,_ is labeled the generalized convective stress tensor, while t ° is

the generalized convective traction. Both _,o and t_ contain terms which axe nonlinear in

the generalized velocities.

In (4.9a), ci_(_) and cee(_) are constants. When _ is inside s,c o. = 6i_ and tee = 1. If _ is

on the boundary then the values are determined by the relative smoothness of s at _. For

outside the region V, both cij and coo are zero. Meanwhile, the kernel functions G_, Goe, Fo

and Foe are provided in Appendix B.2.
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4.2.3.2 Time-Dependent

For this next formulation, the effective body forces and sources are identical to those

provided in (4.5), however, the time-dependent terms are now included in the linear oper-

ator. The required fundamental solution for the viscous portion was first given by Oseen

(1927), while the transient heat conduction fundamental solution is well-known (Carslaw

and Jaeger, 1959). By applying standard methodology (Banerjee and Butterfield, 1981;

Dargush and Banerjee, 1990d), the following governing integral equations can be derived

Is [g'_*ta-fa_*ua-g°_*t°]dS+ Iv [da_k*e_a+ga_* fo-ga_pu°]dV (4.11)

Note that (4.11) is similar to (4.6) for the steady case, except that Riemann convolution

integrals over time have been introduced, along with an initial condition volume integral

involving ux. Once again _ and *g contain terms which are nonlinear in the generalized

velocities. Kernel functions, a_z and Foa, developed from the instantaneous point force and

source adjoint fundamental solutions goz and f_o, are provided in Appendix B.3. It should

be noted that these functions are considerably more complicated than the corresponding

steady kernels.

4.2.4 Numerical Implementation

4.2.4.1 Introduction

Analytical solutions are possible for only the simplest geometries and boundary con-

ditions. More generally, approximations must be introduced in both time and space to

expose the practical utility of these integral equations. Consequently, in this section, state-

of-the-art boundary element technology is applied to steady and unsteady incompressible

thermoviscous flows. Recent boundary element developments in the fields of elastodynam-

ics (Banerjee et al, 1986; Ahmad and Banerjee, 1988) and thermoelasticity (Dargush and

Banerjee, 1989b, 1990a) are directly applicable for these problems. The presentation below

will concentrate on those aspects of the numerical implementation which differ from that

detailed in Section 3. The current implementation is limited to the two-dimensional case,
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although certainly both of the integral formulations presentedin the previoussubsection

are equally valid in three dimension.

4.2.4.2 Temporal and Spatial Discretization

For time-dependent problems, the total time interval from zero to r is subdivided into

N equal increments of duration At. Then, the field variables to, Uo, t°_, and #_o are assumed

constant within each Ar time increment. As a result,

N friar N

~ J(, (4.12)ga# * t° = t ga#dt =- _ .°_°_
n=l --I) AT n=l

with similar expressions holding for the remaining convolution integrals. This is identical

to the treatment discussed in Section 3 for thermoelasticity.

The methodology employed for spatial discretization of the bounding surface also fol-

lows that described in Section 3. Thus, linear, quadratic or quartic shape functions are

utilized to portray the functional behavior of the field variables over three-noded surface

elements.

However, in addition to the surface description, the domain must be discretized into

cells in the regions where the nonlinear convective effects are important, or where nonzero

initial conditions are present. Shape functions are once again introduced to approximate

the geometric and functional variation with each volume cell. Thus, for any point X within

an individual cell

and

xi(<) (4.13)

#i°_(_) -" Mw(_)aiL _ (4.14)

where

M_, M_ shape functions

z_ nodal coordinates

#_ nodal generalized convective stress .
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The current implementationutilizes six and eight-nodedcellsfor the geometricrepresenta-

tion, alongwith linear, quadratic,or quartic functional variation. Typical cellsaredepicted

in Figure 4.1. For the quadratic cell, both serendipity (8-noded) and lagrangian (9-noded)

variations are included. Serindipity quartic cells were found to have unsatisfactory perfor-

mance and consequently are not available.

As a result of the spatial discretization, the boundary integral equation for time-

dependent thermoviscous flow can now be written

n=l rn=l m m

+ E crk°'_ DNzk"+I M, dV + P c,.
1=I 1=1

while for steady conditions this reduces to

M

.°.°z
rr;.w--1 m m

L ]E o D_kM_dV+ crkc_w

l=1

S N-r_+l S]_N-n+l N,odS - t °_ Ga_ N, od

gaN_M_dV] (4.15a)

F_h_dS o Is

(4.15b)

where M and L are the total number of surface elements and volume cells, respectively,

and
M

S= ESm
m=l

L

(4.16a)

I=1

The positioning of the nodal variables outside of the integrals is a key step, since now the

integrands of (4.15) contain only known functions, which can be evaluated numerically.

Up to this juncture, the region of interest has been assumed to be composed of a single

volume v with surface s. However, this need not be the case. In general, space may

be subdivided into a number of individual non-overlapping geometric modeling regions

(GMRs). Each GMR occupies a certain volume of space, say 119, bounded by the surface

Sg. For a point ( within vg, the integration required by (4.15) need only be conducted over

sg and vg, since the contribution to uo(() from the other GMRs outside S 9 will be zero.
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As a result, integration costs can be dramatically reduced by introducing multiple GMRs

for thermoviscous flow problems. Additionally, there is no inherent requirement that all

GMRs utilize the same physical model. For example, one GMR could employ the steady

formulation of equation (4.6), while a second region includes the transient kernel effects

contained in the formulation of (4.11). In any case, compatibility must, of course, be

maintained across all GMR-to-GMR interfaces. Examples of mixed GMR formulation are

contained in Section 4.3.6 and form the basis of the approach for fluid structure interaction

that will be explored in Section 5.

4.2.4.3 Integration

The evaluation of the integrals appearing in (4.15) is the next process to be examined.

Due to the singular nature of the kernel functions aoz, Fo¢ and D,zk considerable care must

be exercised during numerical integration. This is particularly true for incompressible

viscous flow, in which the final solution is extremely sensitive to errors in integration

coefficients. In general, the integration algorithms must be much more sophisticated than

those developed for thermoelasticity. In the present implementation, discussed in detail

in Honkala and Dargush (1990), a number of different integration schemes are employed

depending upon the order of the kernel singularity, the proximity of the field point ( to

the element, and the size of the element.

Once again consider the following three distinct categories for the surface integrals:

(1) The point ( does not lie on the element m.

(2) The point ( lies on the element rn, but the kernels involve only weakly singular inte-

grands of the In r type.

(3) The point ( lies on the element m, and the integral has a strong _ singularity.

In practical problems involving many elements, it is evident that most of the integration

occurring in equation (4.15) will be of the Category (1) variety. The integrand is non-

singular and standard Gaussian quadrature can be employed. However, for near-singular
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caseswhen _ is closeto elementm very high order formulas are neededto capture the

kernelbehavior. For theseinstances,it is beneficial to identify the point X ° on the element

nearest to _, and then subdivide the interval of integration about X °. Within each of

the two subsegments a nonlinear transformation is used to further reduce the order of

Gaussian quadrature needed for high precision. This nonlinear transformation is similar

to that proposed by Mustoe (1984) and Telles (1987), however it should be emphasized

that subsegmentation is still required.

Turning next to Category (2), one finds that, unlike elasticity or potential flow, stan-

dard Gaussian formulas alone are inadequate. Instead the terms involving In r must be

isolated and integrated with special log-weighted Gaussian integration. The remaining

non-singular terms comprising G_o are then evaluated utilizing standard quadrature.

The strongly singular integrals of Category (3) exist only in the Cauchy principal

value sense and cannot be evaluated numerically with sufficient precision. Fortunately,

the indirect 'rigid body' or 'equipotential' method, originally developed by Cruse (1974),

is applicable, and leads to the accurate determination of the singular block of the second

integral in (4.15). The remainder of that integral is non-singular. Consequently, subseg-

mentation along with standard Gaussian quadrature is adequate.

Similar care is needed for the volume integrals, which involve the kernel Dock con-

talning a _-type singularity. However, for two-dimensional volume integration, this kernel

is only weakly singular, and can be evaluated in the following direct manner. First, the

nearest node, say A, in cell t to the point _ is determined. The cell is then subdivided

into triangles radiating from A as shown in Figure 4.3. Next, each triangle is mapped

onto a unit square. The apex corresponding to A is stretched to form one side of the

square. This process essentially eliminates the } singularity. Finally, the square is further

subsegmented in both radial and circumferential directions depending upon the closeness

of _ and the size of cell l. Standard Gaussian quadrature is applied to each subsegment.

This cell integration scheme was based on work by Mustoe (1984) for elastoplasticity. In
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the presentincompressibleviscousflow implementation, toleranceshavebeentightened so

that additional subsegmentation is performed, along with higher order quadrature formu-

las. Additionally, it has been found that circumferential subsegmentation is much more

beneficial than the radial breakup.

In time-dependent problems, beyond the first time step, additional integration is re-

quired. This integration involves the kernels c,_, F_ and D_a k for n > 1. From Table 4.1,

these are all nonsingular. As a result, a much less sophisticated integration scheme is em-

ployed to obtain the required level of accuracy with fewer subsegments and gauss points.

If the initial velocities are not uniform, then the nonsingular initial condition integral of

equation (4.15a) must also be evaluated at each time step. This is accomplished in a

manner similar to the integration of D,_pk.

Table 4.1 - Kernel Singularities

Kernel Singularity Order

G 1 In r
c,p

a2_ for n > 1 non-singular

F 1 !
a_ r

F[;_ for n > 1 non-singular

D2Z k for n > 1 non-singular

4.2.4.4 Assembly

Once the spatial discretization and numerical integration algorithms are completely

defined, a system of nonlinear algebraic equations can be developed to permit an approx-

imate solution of the thermoviscous boundary value problem. The method of collocation

is employed by writing (4.15) at each functional mode.
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where

tn

For each time step N of a transient problem, this nodal collocation process yields

U n

U o

Gn

F n

Dn

r N

P

M

Q= __,Am
rnm l

Am

N

Z [Gg-n+lt'_ - Fg-n+lun -- GN-'_+lt°_ + Dg-n+la_] -- FNu° = 0 (4.17)

nodal traction vector for time step n with 3Q components

nodal velocity vector for time step n with 3P components

nodal convective traction vector for time step n with 3Q components

nodal convective stress vector for time step n with 6P components

nodal initial velocity vector with 3P components

unassembled matrix of size 3P x 3Q calculated from the first

integral of (4.15) during time step n

assembled matrix of size 3P x 3P calculated from the second

integral of (4.15) during time step n, plus the cos contribution

in F 1

assembled matrix of size 3P x 6P calculated from the first volume

integral of (4.15)

assembled matrix of size 3P x 3P calculated from the initial condition

integral of (4.15)

total number of functional nodes

number of functional nodes in element m .

All of the coefficient matrices in (4.17) contain independent blocks for each GMR in mul-

tiregion problems. However, for any well-posed problem, the boundary conditions and

interface relations remove all but 3P unknown components of u N and t N. Furthermore,
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by solving (4.17) at each increment of time, all of the components of un,tn,t °_ and _o_ for

n < N are known from previous time steps. Then, (4.17) can be rewritten at time N&r as

in which

X N

g(x) = /kX N -- Die °N + Glt °N - By N

N-1

- _ [GN-n+lt n -- FN-n+lu" -- GN-n+lt °n + DN-n+Ia an] + rNu ° = 0
n=l

(4.1s)

nodal vector of unknowns with 3P components

yN nodal vector of knowns with 3Q components

while A and B are the associated coefficient obtained from Y 1 and G 1. The A matrix now

includes the compatibility relationships enforced on GMR interfaces. As a result, the GMR

blocks in A are no longer independent, however A does remain block banded.

The terms included in the summation of (4.18) represent the contribution of past

events. This, along with the terms By N and rNu °, can be simply evaluated once at each

time step N with no need for iteration. Let,

N--1

b N = -By N - _ [GN-"+lt n- FN-'_+lU '_- GN-"+lt°_ + DN-n+'a _] + ° (4.19)
r*=l

Then (4.18) becomes the following nonlinear set of algebraic equations

g(x) = Ax N - DI_ r°N + Glt °N + b N = O. (4.20)

A closer examination of b N is in order. For example with N = 1

b 1 = -By 1 +Flu °, (4.21a)

while for the second time step

b 2 = -By 2 - G2t 1 + F2u 1 + G2t °1 - D2a °1 + r2u ° (4.21b)

Obviously, for each step N, one new set of matrices G N, F N, D N and r N must be determined

via integration and assembly. Integration, particularly the volume integration needed for

D N and T N, can be quite expensive.
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As an alternative to the convolution approachdefinedabove,a time marching recur-

ring initial condition algorithm can be employed. This has been utilized by a number of

researchers for transient problems of heat conduction, acoustics, and elasticity (Banerjee

and Butterfield, 1981). For this latter approach, at time step N the entire contribution of

past events is represented by an initial condition integral which utilizes u n-1 as the initial

velocity. Thus,

g(x) = Ax N - Die °N + Glt °N + b N = 0 (4.22)

with

b N = -By N + I'lu N-1. (4.23)

Obviously, (4.22) is identical to (4.20). Only the evaluation of b N is different. The advan-

tage of the recurring initial condition approach is that no integration is needed beyond the

first time step. However, volume integration is required throughout the entire domain be-

cause of the presence of u N-l, even for linear problems in which volume integration would

not normally be required.

In order to take full advantage of both methods, the present work utilizes the con-

volution approach in linear regions, and the recurring initial condition algorithm for the

remaining nonlinear GMRs which are filled with volume cells. Since b g ca_l be computed

independently for each GMR, this new dual approach provides no particular difficulty.

4.2.4.5 Solution

An iterative algorithm, along the lines of those traditionally used for BEM elastoplas-

ticity (Banerjee and Butterfield, 1981; Banerjee et al, 1987), can be employed to solve the

boundary value problem. However, convergence is usually achieved only at low Reynolds

number. More generally the interior equations must be brought into the system matrix, as

in (4.20), and a full or modified Newton-Raphson algorithm must be employed to obtain

solutions even at moderate Reynolds number. (Similar 'variable stiffness' algorithms have

also been introduced by Banerjee and Raveendra (1987) and Henry and Banerjee (1988)
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for elastoplasticity.) Symbolically, at any iteration k,

where

[ c_g/ l)]{Axk}_--_{g(x) k}7xx_x
(4.24)

x k+l = x k + _x k (4.25)

and the derivatives on the lefthand side of (4.24) are evaluated at x k. With the full

Newton-Raphson approach, 1 = k and the system matrix must be formed and decomposed

at each iteration. The out-of-core solver used in the present implementation was devel-

oped originally for elastostatics (Banerjee et al, 1985) from the LINPACK software package

(Dongarra et al, 1979), and operates on a submatrix level. Within each submatrix, Gaus-

sian elimination with single pivoting reduces the block to upper triangular form. The final

decomposed compacted form of the system matrix is stored in a direct access file for later

reuse. Backsubstitution completes the determination of _lx k. Iteration continues until

II(,XxN)klt
ii(xN)_l I < e (4.26)

where _ is a small tolerance, and Ilxll is the Euclidean norm of x. For the modified Newton-

Raphson algorithm, the system matrix is not formed at every iteration, and only backsub-

stitution is needed to determine _,x k.

4.2.4.6 Calculation of Additional Boundary Quantities

Once the iterative process has converged, a number of additional boundary quantities

of interest can be easily calculated. For example, lift and drag can be calculated by numer-

ically integrating the known nodal traction and shape function products over the surface

elements of interest. Low order Gaussian quadrature is adequate for this integration, since

all the functions are very well behaved.

Furthermore, at each boundary node, the pressure p, stress o-_.i, and strain rates _ can

be determined by simultaneously solving the following relationships:

= (4.27a)

41



Ouj
aij(_) _ p ( _(_) + _xi (_)) .-bp(_) = O (4.27b)

0zj _ bh_

a_i(_.____)+ p(_) = 0. (4.27d)
2

It should be emphasized that (4.27) represents a set of nine independent equations which

are written at the boundary point _, and can be solved easily for p, aij and _ at that

point. Afterward, boundary vorticity and dilatation can be obtained, respectively, from

fl_ 0u2 0ul (4.28a)
0xl Oz2

0Ul _U2 (4.28b)
/k = _X 1 JF _Z 2.

Of course, for incompressible flow, the dilatation should be zero, but (4.28b) can be used

as a check.

A comprehensive PATRAN interface has also been developed. Consequently, any of

the quantities computed above may be displayed graphically in the form of profiles or

contours.

4.2.5 Numerical Examples

4.2.5.1 Introduction

All of the formulations discussed above have been implemented as a segment of GP-

BEST, a general purpose boundary element code. In this section, a number of examples

are included, primarily, to demonstrate the validity and attractiveness of the boundary

element formulations for relatively slow incompressible flow.

4.2.5.2 Converging Channel

The two-dimensional incompressible flow through a converging channel also possesses

a well known analytical solution which is purely radial (Millsaps and Pohlhausen, 1953).

A comprehensive finite element study of this problem has been made by Gartling et al

(1977).
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The boundary element model is shown in Figure 4.4a. The mesh contains 96 cells

and is divided into two regions. The boundary conditions were modeled using an exact

specification of the boundary conditions appearing in the analytical solution (Fig. 4.4a).

Viscosity is unity, and tractions and density are incremented to reach higher Reynolds

numbers. The Reynolds number for this problem is defined as

Re = pR_V2(Ri) (4.29)
U

where V2(R_) is the maximum velocity in the region, which is -24.0 for the problem solved

here.

Figure 4.4b illustrates the results for two Reynolds numbers, indicating good accuracy

along the entire width of the channel. Not only are the velocities accurate, but the pressures

and tractions are very accurate also.

It has been observed that finite element versions of this problem have several pecu-

liarities which prevent the analytical solution from being reproduced. First of all, since

velocities are often specified at the inlet and at the wall and centerline, ambiguous bound-

ary condition specification results. Also, typically a parabolic "fully developed" velocity

profile is usually specified at the inlet. However, the nonlinear solution has a flattened

velocity distribution across the width of the channel (see Fig. 4.4b). Hence, the analyt-

ical solution cannot be reproduced exactly if the "fully developed" profile is specified at

the inlet. Also, the finite element modelers of this problem usually leave out the traction

distribution at the exit and specify zero tractions there. This also gives rise to non-radial

fiO'_ T.

The reason for so much interest in the converging flow problem is that it is one of

the few problems possessing an analytical solution. However, by specifying a model which

does not correspond to this problem, as in the finite element case, one cannot accurately

compare results to the analytical solution. Any such comparisons are merely qualitative.

In this light, the boundary element model here has utilized an exact model of the boundary

condition and a meaningful comparison can be made.
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4.2.5.3 Transient Couette Flow

Consider as the first transient analysis the case of developing Couette flow between

two plates, parallel to the x-z plane, a distance h apart. Initially, both of the plates, as

well as the fluid, are at rest. Then, beginning at time t = 0, the bottom plate is moved

continuously with velocity v in the x-direction. Due to the no-slip condition at the fluid-

plate interface, Couette flow begins to develop as the vorticity diffuses. Eventually, when

steady conditions prevail, the x-component of the velocity assumes a linear profile.

The following exact solution to this unsteady problem is provided by Schlicting (1955):

I5 5 }v,(y, t) = V erfc[2nr11 + 77]- erfc[2(n + 1)01 - r/] (4.30a)

kn=0 n=0

vu(y, ¢) = 0 (4.30b)

where

y h
(4.31a, b)

r1 -- (4pt/p)l/2 rh- (4pt/p)l/2

erfc(z) = 1 - erf(z) = 1 - _ e-'t2dT. (4.31c)

All of the nonlinear terms vanish, since both vu and avx/Oz are zero.

The two-dimensional boundary element model, utilized for this problem, is displayed

in Figure 4.5. Four quadratic surface elements are employed, with one along each edge

of the domain. A number of sampling points are included strictly to monitor response.

Notice that the region of interest is arbitrarily truncated at the planes z = 0 and x = _. All

of the boundary conditions are also shown in Figure 4.5. For the presentation of GPBEST

results, all quantities are normalized. Thus,

y = Y (4.32a)
h

ct
T = h---/ (4.32b)

and the horizontal velocity is v_/V. Figure 4.6 provides the velocity profiles at four different

times, using a time step AT = 0.025 and the convolution approach. There is some error
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present at small times near the top plate, where the velocity is nearly zero. Results at

Y = 0.5 versus time are shown in Figure 4.7 for several values of the time step. Obviously,

the correlation improves with a reduction in time step and AT = 0.025 provides accurate

velocities throughout the time history. However, even for a very large time step, the

GPBEST solution shows no signs of instability. Error, evident in the initial portion,

diminishes with time, and all values of _T produce the correct steady response. Further

reduction of &T beyond 0.025 yields little benefit. Instead, mesh refinement in the y-

direction is needed, primarily to capture the short time behavior. Figure 4.8 shows the

GPBEST results for a model with just two, equal length, elements along each vertical side.

The correlation with the analytical solution is now excellent. The time step selected for

the refined model was based upon the general recommendation that

ZxT~ 0.0 tL,. (4.33)
C

where *,,,i, is the length of the smallest element.

The convolution approach, defined by equation (4.18), was used to obtain the results

presented in Figures 4.6-4.8. Alternatively, the recurring initial condition algorithm can

be invoked. In that case, complete volume discretization is required even for this linear

problem. For the model of Figure 4.6, a single volume cell connecting the eight nodes is

all that is required. The GPBEST results for different values of &T are shown in Figure

4.9. The solutions are good for the two smaller time step magnitudes, however there is a

slight degradation in accuracy from the convolution results.

Interestingly, the solution in (4.30a) is identical to that for one-dimensional transient

heat conduction in an insulated rod with one end maintained at temperature V, while the

other remains at zero. However, in a corresponding boundary element analysis, the numer-

ical integrations defined in (4.15a) must be calculated much more precisely for unsteady

viscous flow than for heat conduction in order to obtain comparable levels of accuracy.
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4.2.5.4 Flow Between Rotating Cylinders

As the next example, the developing flow between rotating cylinders is analyzed. The

inner cylinder of radius ri is stationary, while the outer concentric cylinder with radius

ro is given a tangential velocity v, beginning abruptly at time zero. The steady solution

appears in Schlicting (1955). However, even for the transient case, the flow is purely

circumferential. Thus, the governing Navier-Stokes equations reduce to

_ \ -_-r_ +(0%° l Ovo vo ) Ovo =r Or -_ - p--_ 0 (4.34a)

Op v_
- c9"-_+ --r = 0 (4.34b)

in polar coordinates (r, 0, z). As discussed in Batchelor (1967), separation of variables can

be used to obtain the following solution (Honkala and Dargush, 1990)

Vr(r,t) = 0 (4.35a)

c2 E Dn{Jl(Anr)Yl(A,ro) - Yl(Anr)Jl(X,_ro)}e -x_avo(r,_) = clr+-- +
r

n--1

where

Yro
C2 -- --ClP_

,t 2 _,y_(_,r_)
D,_ = 2 J_(A-n--_):_l(_nro) {Yx(A"r°)Fl'_ + Jx(A,_ro)F2n}

(4.3sb)

(4.36a, b)

(4.36 )

(4.3 d)

(4.a6 )

and _,_ is the nth root of the equation

= 0. (4,3T)

Figure 4.10 depicts the boundary element model representing the region between the

two cylinders. A thirty degree segment is isolated, with cyclic symmetry boundary condi-

tions imposed along the edges 6 = 0° and 6 = 30% The inner radius is unity, while an outer

radius of two is assumed. Unit values are also taken for the viscosity, density and V. The
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model consistsof six quadratic elements and two quadratic cells. The ceils, of course, are

not needed for linear analysis utilizing the convolution approach.

Results of the GPBEST analysis axe compared to the exact solution in Figure 4.11

for convolution and in Figure 4.12 for the recurring initial condition algorithm. In both

diagrams, results with and without the nonlinear convective terms are plotted. The re-

suits are quite good throughout the time history with the convolution approach, while

some noticeable error is present at early times for the recurring initial condition solutions.

The linear and nonlinear velocity profiles are nearly identical, as expected from the exact

solution expressed in (4.35b). However, unlike the previous example, the nonlinear terms

do not simply vanish from the integral equation written in cartesian form. Instead, the

nonlinear surface and volume integrals must combine in the proper manner to produce

the correct solution. Consequently, this problem provides a good test for the entire BEM

formulation.

Relative run times are shown in Table 4.2 for the different analysis types. Obviously,

the nonlinear convolution approach is very expensive, since this involves volume integration

at each time step. As a result, in the general implementation, convolution is only utilized

in linear GMRs.

Table 4.2 - Flow Between Rotating Cylinders

(Run Time Comparisons)

Analysis Type

Linear

Nonlinear

Time Marching Algorithm

Convolution

Convolution

Relative CPU Time

1.0

25.8

Linear

Nonlinear

Recurring Initial Condition

Recurring Initial Condition
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4.2.5.5 Driven Cavity Flow

The two-dimensional driven cavity has become the standard test problem for incom-

pressible computational fluid dynamics codes. In a way, this is unfortunate because of the

ambiguities in the specification of the boundary conditions. However, numerous results

are available for comparison purposes.

The incompressible fluid of uniform viscosity is confined within a unit square region.

The fluid velocities on the left, right and bottom sides are fixed at zero, while a uniform

nonzero velocity is specified in the x-direction along the top edge. Thus, in the top corners,

the x-velocity is not clearly defined. To alleviate this difficulty in the present analysis, the

magnitude of this velocity component is tapered to zero at the corners.

Results are presented for the four region, 324 cell boundary element model shown in

Figure 4.13. Notice that a higher level of refinement is used near the edges. Spatial plots

of the resulting velocity vectors are displayed in Figures 4.14a and b for Reynolds numbers

(Re) of 400 and 1000, respectively. Notice that, in particular, the shift of the vortical

center follows that described by Burggraf (1966) in his classic paper. A more quantitative

examination of the results can be found in Figure 4.15 where the horizontal velocities on

the vertical centerline obtained from the present GPBEST analysis are compared to those

of Ghia et al (1982). It is assumed that the latter solutions are quite accurate since the

authors employed a 129 by 129 finite difference grid. As is apparent, from the figure, all

of the solutions are in excellent agreement. Finally, it should be noted that the simple

iterative algorithm fails to converge much beyond Re = 100. Beyond that range the use of

a Newton-Raphson type algorithm is imperative.

In this driven cavity problem, complete volume discretization is required, since the

nonlinear convective terms are nonzero throughout the entire domain. As a result, the

evaluation of the volume integrals appearing in (4.6) is computationally expensive due

to the singular nature of the kernels. Consequently, it is important to investigate the

relative merits of a boundary element approach. To aid in this study, a finite element
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formulation was developedbasedprimarily on the work of Gartling et al (1977). This

finite element implementation utilizes a penalty function approachfor incompressibility,

along with a Newton-Raphsonsolution algorithm. An identical sixty-four lagrangian ceil

model wasselectedfor both the boundary elementand finite elementanalysis. Resultsare

plotted in Figure 4.16for Re = 100. The boundary element results, though more expensive,

are significantly more accurate. In fact, at this level of refinement, the finite element

results show some oscillation. Clearly, for a given mesh, the boundary integral formulation

captures more of the physics. Further comparative studies are planned for the coming

months.

4.2.5.6 Transient Driven Cavity Flow

The next example involves the initiation of flow in the same square cavity. An in-

compressible fluid of uniform density and viscosity is at rest within a unit square region.

The velocities of the vertical sides and the bottom are fixed at zero throughout time. At

time zero, the horizontal velocity of the top edge is suddenly raised to a value of 1000

and maintained at that level. A gradual transition of velocities is introduced near the top

corners to provide continuity.

The four region, 324 cell model shown in Figure 4.13 is employed for the boundary

element analysis. The resulting velocity vector plots at several times are shown in Figure

4.17 for this case having a Reynolds number of 1000. The recurring condition algorithm

was used. As in the previous two time-dependent examples, the results lead directly to

the steady solution after a sufficient number of time steps. This steady solution correlates

closely with the results of Ghia et al (1982), as presented in Figure 4.15.

It should be noted that Tosaka and Kakuda (1987) have run the transient driven cavity

at Re = 10,000. However, their results show signs of instability even at relatively small times,

and are compared to the steady solution of Ghia et al which also is not correct at this

much higher Reynolds number. A valid solution in this Re range would necessitate the use

of an extremely refined mesh, far beyond that employed by Tosaka and Kakuda or Ghia
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et _.

4.2.6 Summary

The formulations presented in this section, based upon Stokes fundamental solutions,

are suited primarily for low Reynolds number regimes. For creeping flows, all of the

nonlinear terms vanish, resulting in a very efficient, very precise boundary-only solution.

The resulting boundary element method is clearly superior to any of the domain based

methods for problems of this nature, under both steady and transient conditions.

At somewhat higher velocities, the nonlinear convective effects cannot be ignored.

Consequently, the surface integral involving t ° and the volume integral containing e_,_ in

equations (4.6) and (4.11) are required. Since volume integration is quite computationally

intensive, a boundary element approach becomes less attractive. This is particularly true

when discretization is required throughout the domain, as is the case for confined flows.

Still, for a given mesh, the boundary element formulation provides a higher degree of

accuracy than finite difference or finite element methods, especially in the determination

of boundary quantities.

4.3 Convective Incompressible Thermoviscous Flow

4.3.1 Introduction

At high fluid velocities, the convective terms in Navier-Stokes equations tend to dom-

inate. As a result, boundary element formulations employing Stokes kernels are inappro-

priate, since these fundamental solutions model the effects of viscosity but not convection.

Instead, more of the physics of the problem must be brought into the linear operator. This

concept was clearly understood by Oseen in the early portion of the twentieth century. In

his 1927 monograph, Oseen developed exact integral expressions for Navier-Stokes equa-

tions using a convective fundamental solution. Unfortunately since this was well before

the advent of the computer, he was unable to do much with his formulations beyond some

approximate solutions at very low Reynolds number. In the present section, the work of
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Oseenis resurrectedto form the basisfor an attractive boundary elementmethod for high

speedflows.

4.3.2 Governing Equations

The differential equations, governing the behavior of an incompressible thermoviscous

fluid in the presence of a free stream velocity Ui, can be written:

02ui Op Oui Ou_
(4.38a)

cgui
-- = 0, (4.3sb)
0x_

_2_ 08 08

k=--=--_o,jo_5- Pccv_x_ Pcc_ + ¢' = 0.

where ui once again represents the velocity perturbation.

forces and sources are defined as

(4.38c)

In (4.38), the effective body

|ilr

a(x,_) = 2,rk
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(4.4t)

4.3.3 Fundamental Solutions

It is instructive to begin with a look at the fundamental solution of the steady form

of the heat equation defined above as (4.38c). In a static medium (i.e., u_ = 0), the

fundamental solution G must satisfy

02G

k OxjOxj + 5(x - _) = 0 (4.40)

in which 5 is the generalized delta function. The solution to (4.40) in two-dimensional

space is the well-known potential flow Green's function

_ui

.f" = -p,,__ + .,', (4.a9_)

00

¢' = -p_,,,__ + ¢. (4.39b)

These equations are of course identical to those presented in (4.4), except that now the

convective terms pu#ou_/Oxj and pc, U_OO/Ox_ are included in the linear differential operator.

Fundamental solutions based upon (4.38) will contain the character of the flow field at

high velocities.



with

v_ = xi - (i (4.42a)

r 2 = YiYi (4.42b)

Thus, O(x,() represents the temperature response at x due to a unit point heat source at

(. This response is plotted in the xl - z2 plane for a source at the origin in Figure 4.18.

Radial symmetry is evident.

However, if the medium is moving at velocity Ui, then the fundamental solution G U

must instead satisfy

02G u OG u

k OxjOxj pc'Vj-_zj + 6(x - _) = 0 (4.43)

Now, the Green's function (e.g. Carslaw and Jaeger, 1947) is given by

GU(='_) - 27rk Ko r

in which ,_ = k/pc,.

an zl-directional velocity. Obviously, in a moving medium, radial symmetry is lost and

a pronounced front-and-back effect develops. That is, at a given distance from the heat

source, it is hottest directly downstream.

It should be emphasized that the so-called convective fundamental solution defined in

(4.44) actualy embodies both the processes of conduction and convection. At low velocity,

conduction dominates producing a nearly radially symmetric response. On the other hand,

in a high speed medium, the response is concentrated in a very narrow band downstream

of the source. Thus, as illustrated in Figure 4.19, a e captures the transition from elliptic

toward hyperbolic behavior.

The corresponding convective viscous fundamental solution Gu was first presented by

Oseen (1911), as the solution to

(4.44)

This response is plotted in Figures 4.19a-d for various magnitudes of

pUk--_-_z" + 6_j6(z - () = o
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The G.u. tensor is given in explicit form in Appendix B.4. However, the component Girl,
t3

which represents the velocity in the xl-direction due to a unit point force in the al-direction,

is displayed in Figures 4.20a-d. For very small v_, the solution of (4.45) approaches the

Stokes kernels detailed in Appendix B.2. This is shown in Figure 4.20a. Notice that, unlike

the heat conduction response of Figure 4.19a, the static viscous fundamental solution is not

radially symmetric. This is due to the vectorial nature of the flow, and is directly attributed

to the Vivj/r 2 terms in Gi3. However, as the flow velocity increases (i.e., Figures 4.20b-d), a

stronger sense of upstream and downstream develops, and the response once again becomes

concentrated in a narrow band ahead of the applied force. At high speed, outside of this

band, the response is essentially zero. This behavior is not only important from a physical

standpoint, but also can be beneficial in the development of efficient boundary element

algorithms.

4.3.4 Integral Representations

The convective fundamental solutions depicted in Figures 4.19 and 4.20 capture the

proper character of high Reynolds number incompressible thermoviscous flows, and as a

result, can provide the basis for an attractive boundary element formulation. The corre-

sponding integral equations, under steady conditions, can be developed directly from the

governing differential equations (4.3S). This result is,

IS U U ,t'2_U 4Uol _ r_U Uo- U

I"

e_uo [a_t_ dS + Jv GoM_ ] dr,= - F_,zuo - ,,.._o_t,oJ [Vo_kako +

where

(4.46)

Uo = [pukui pc_ukO] (4.47a)_ka

tVo= vo (4.47b)ffkv/O,k.

the superscript u on the kernel functions is a reminder that these are based upon convective

fundamental solutions. All of the kernels appearing in (4.46) are detailed in Appendix B.4.
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In most casesthe body forces,L_, are either zero or can be accounted for via a particular

integral so that the second volume integral in (4.46) is not needed.

In examining (4.46), it should be noted that the nonlinearities are contained in the

rw _Vo Specifically,surface integral involving _v _Uo and the remaining volume integral, _,_kvko.
_v Clt

only t_v° and _uok_ are nonlinear, and these are both formed from the product of pertur-

bations. For high speed flows, these perturbations are only significant in the vicinity of

objects and in the wake. As a result, volume discretization is only needed in those areas.

Elsewhere, the linearized Oseen approximation is adequate.

Equation (4.46) is identical to the integral equation developed by Oseen (1927), ex-

cept for the treatment of the nonlinear convective terms. In deriving (4.46), an additional

integration-by-parts operation was invoked to completely eliminate the appearance of ve-

locity gradients.

If one is interested in the transient thermoviscous response in a medium with a more

or less steady free stream velocity, then a time-dependent formulation is also possible. For

this case, the time derivatives are retained in the linear operator, and the following integral

equation results:

fs ._o ]dS=

Jv u uo g_,_,/o u ,,o,+ [do,_k * ¢ka + - gapP aJ dV (4.48)

This integral equation and the corresponding fundamental solutions have not appeared

in the literature. The functions gu are quite involved, but can be expressed in terms of

incomplete exponential integrals. Details will be presented next year.

4.3.5 Numerical Implementation

The integral representations for convective thermoviscous flow are quite similar to those

presented in Section 4.2.3. Consequently, there is a great deal of overlap in the algorithms

employed for their respective numerical implementation. At present, the major difference

occurs in the schemes utilized for integration.
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As discussedpreviously, the convectivefundamental solutions have a much different

character than the more familiar Stokes based kernels. The standard boundary element

integration schemes are unable to accurately capture the localized nature of the convective

kernels, particularly at large Reynolds number. In general, subsegmentation must be

much more intense for singular and near-singular cases. For example, in convective near-

singular integration, first the location X ° on the element nearest to the load point _ is

identified. Then, a graded subsegmentation pattern is defined about X ° based upon criteria

including the distance of ( to x ° and the free stream velocity. For higher speed flow,

smaller subsegments are generated. Gaussian integration order is also typically higher for

the convective surface integration. Similar adjustments are required for volume integration

as well.

During this past year, some progress has been made in the development of alternate

integration strategies for singular integration. For example, partial analytical treatment

of the a v. kernel has proved to be more cost effective. Also, the standard 'rigid body'
'3

technique has been extended to other known solution fields in order to indirectly calculate

some of the singular contributions.

However, additional effort is still needed to develop integration algorithms designed

specifically for high speed convective kernels. In particular, the response depicted in Figure

4.20d must be anticipated. Thus, there is no need to integrate an element which lies outside

the narrow band of nonzero response. Furthermore, elements located partially or wholely

within the band should be subsegmented accordingly.

The remainder of the numerical implementation follows that discussed in Section 4.2.4.

Thus, assembly, solution, and the calculation of additional boundary quantities are ac-

complished in the same manner as for the Stokes kernel approach. While this is perfectly

legitimate, full advantage has not yet been taken of the character of the convective re-

sponse. For example, at very high speeds, as the behavior becomes hyperbolic, the system

equations form a nearly-sequential, banded set. The present assembler and solver, which
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were designedfor elliptic systems,do not recognizethis structure, and consequently, are

quite inefficient.

4.3.6 Numerical Examples

4.3.6.1 Introduction

In order to thoroughly study the effectiveness of a boundary element approach for high

speed flows, the above convective formulations were implemented as a segment of a state-

of-the-art general purpose boundary element code. In the following, several numerical

examples are presented. These examples are intended to validate the formulations, and

to suggest the potential advantages of using a boundary element method for this class of

problems.

4.3.6.2 Burgers Flow

The classic uniaxial linear Burgers problem provides an excellent test of the convective

thermoviscous formulations. The incompressible fluid flows in the z-direction with uniform

velocity u. Meanwhile, the v-component of the velocity and temperature are specified as

Uo and To, respectively, at inlet. Both are zero at the outlet. The length of the flow field

is L. The analytical solution (Schlicting, 1955) is

1_v = (Vo

where

T = (%

with RL = UL.

The boundary element model employs eighteen quadratic surface elements encompass-

ing the rectangular domain. The elements are graded, providing a very fine discretization

near the exit, where v v and T vary substantially for large RL. Results are shown in Figure
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4.21 for the thermal problem and in Figure 4.22 for the viscous problem. Excellent cor-

relation with the analytical solution is obtained in both instances for this boundary-only

analysis, even for the highly convective case of RL = 1000. The portion of the flow field

just ahead of the outlet is examined more closely in Figure 4.23. The convective Oseen

solution obviously produces a precise solution. This problem can also be solved by utilizing

the Stokes kernels and volume cells. As seen in Figure 4.23, this latter approach is not

quite as accurate. It should be noted that traditionally finite difference and finite element

methods have a difficult time dealing with the convective terms present in this problem.

Generally, ad hoc upwinding techniques must be introduced to produce stable, accurate

solutions. On the other hand, with the convective boundary element approach the kernel

functions contain an analytical form of upwinding. As a result, very precise BEM results

can be obtained.

4.3.6.3 Flow Over a Cylinder

As the next convective fluids example, the oft-studied case of incompressible flow over

a circular cylinder is considered. Initially for this problem, both the steady convective

and non-convective formulations are utilized in the same analysis. The boundary element

model is displayed in Figure 4.24. Note that half-symmetry is imposed.. In the inner

region, the Stokes kernels are employed along with a complete volume discretization. Thus,

the complete Navier-Stokes equations are represented. The outer region uses the Oseen

kernels with a boundary-only formulation. The small non-linear contributions that would

be present in the outer region away from the cylinder are ignored. For those more familiar

with finite elements, each region can be thought of as a substructure or superelement.

However, the outer region does not require a volume mesh.

The steady-state velocity vector plot at Re = 40 is shown in Figure 4.25. The recirculat-

ing zone, behind the cylinder, is clearly visible. Additionally, the resulting drag coefficient

(CD) of 1.8 obtained from the BE analysis is within the band of experimental scatter as

presented by Panton (1984) for the circular cylinder.
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Similarly, a transient analysiscanbe conducted. Now a full meshasshownin Figure

4.26 is employed. The inner regionusesa time-dependentnonlinear Stokesformulation,

while linear Oseenkernelsprovide the basisfor the outer infinite region. Resultsareshown

in Figure 4.27afor Re = 100 at a time for which the flow is nearly fully developed. Mean-

while, Figure 4.27b present the solution at the same time, but with a different angle of

attack for the oncoming fluid. The results are virtually identical. This illustrates the

relative insensitivity of boundary element solutions to the cell discretization pattern. The

reason for this behavior, which is particularly important in modeling hyperbolic phenom-

ena, is that so much of the boundary element formulation is analytical. Another item

to note from these results is the completely symmetric flow patterns that were obtained.

Asymmetry would have to be induced by perturbing either the geometry, the free stream

velocity or the boundary conditions.

While all of this is encouraging, the development of a simplified procedure involving

far less volume discretization is desirable. For example, a completely linear Oseen analysis,

which ignores all nonlinear convective terms in both regions, produces a very similar solu-

tion, except in the vicinity of the cylinder. Vector plots from the nonlinear analysis and

the boundary-only linear Oseen analysis are superimposed in Figure 4.28. Although it is

difficult to distinguish between the two analyses in that plot, both produce a recirculatory

zone behind the cylinder. Thus, the main features of the problem are captured by the

boundary-only analysis. However, the linear solution, in general, overstates the velocities

and velocity gradients in the neighborhood of the cylinder. Consequently, a drag coefficient

of 3.4 is calculated, which is much higher than that found experimentally. This trend, of

overpredicting the experimental drag, continues even to much higher Reynolds numbers

as shown in Figure 4.29. Qualitatively, however, the behavior of the BEM Oseen solution

is consistent with the experimental curve for Reynolds Numbers up to 100,000.

A much improved solution can be obtained by introducing a row of cells encompassing

the cylinder. The full nonlinear Navier-Stokes equations are solved within this inner region
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which includes an inner and outer ring of surfaceelements.Exterior to the outer ring is a

linear Oseenregion. This exterior regionconsistssimply of one matching ring of surface

elements. Its volume extends outward to infinity, where the velocity reaches its free stream

value. Figure 4.30 illustrates a typical mesh, along with the resulting velocity vectors. As

Reynolds number is increased, the significant nonlinear effects concentrate nearer to the

cylinder, so that the thickness of the inner region may be reduced. Figure 4.29 also displays

the drag obtained by utilizing just a single row of cells. Results are quite encouraging.

An alternative approach for high speed flows involves the conversion of the nonlinear

volume integral into effectively a surface integral by introducing a suitable perturbation

velocity decay function. If this is accomplished then even a nonlinear analysis reduces to a

boundary-only solution algorithm. A concerted effort will be made in this direction during

the coming year.

4.3.6.4 Flow Past Airfoils

For illustrative purposes, a boundary-only thermoviscous analysis was conducted for

convective flow around a pair of NACA-0018 airfoils. The boundary element model of the

blades is shown in Figure 4.31. A hot fluid at unit temperature flows from left to right

with a unit magnitude of the free stream velocity. Meanwhile, the airfoils axe assumed to

be stationary with their outer surface maintained at zero temperature.

It should be emphasized that this problem was run as a boundary-only analysis, how-

ever, a number of sampling points were included in the fluid surrounding the airfoils in

order to graphically portray the response. First the thermal solution is examined. Figure

4.323 depicts the temperature distribution in the fluid at a Peclet (Pc) number of ten,

where Pe = UL/_, with fluid velocity U, thermal diffusivity _ and airfoil chord length L.

Meanwhile, Figures 4.32b-d show the response at progressively higher Peclet number. At

Pe = 10000, quartic surface elements were required in order to obtain an accurate solution.

The strong convective character is quite noticeable at larger Pe as the effect of the cold

airfoils is swept downstream. Also, in Figures 4.32c and d there is virtually no interaction
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betweenthe airfoils. This type of behavior is expectedfrom a physical standpoint. It oc-

curs in the analysisbecauseof the bandednature of the convectivefundamental solutions

illustrated previously (e.g.,Figure 4.19). However,interaction will take placeif the angle

of attack is altered. Figure 4.32eshowsthe responseat a 30° angle for Pe = 1000.

The velocity distribution around the airfoils follows a similar pattern. For these results

displayed in Figure 4.33, Reynolds number is defined by Re = pUL/p. In these plots, the

magnitude of the velocity, obtained from a boundary-only solution, is contoured. These

results feature somewhat more interaction particularly upstream of the airfoils. It should

be emphasized that even though a linearized solution algorithm is employed the so-called

phenomenon of boundary layer separation can still occur. Figure 4.34 focuses on the rear

portion of the upper blade. The contour line demarks the transition from positive to

negative streamwise velocity, and thus very nearly identifies the point of separation.

Next, a second row of blades is added. The modeling effort for this extension is quite

trivial, since there is actually no discretization required beyond that needed to describe

the airfoil surfaces. For this problem, four vertical sections of one hundred sampling points

were included for display purposes. Velocity vectors across those sections are plotted

in Figures 4.35 and 4.36 for Reynolds numbers of 10000 and 100000, respectively. The

vertical spacing between the airfoils increases as one examines a through c in these

two diagrams. The velocity profiles are noticeably affected by that spacing. However, in

all of the plots significant velocity gradients are present. It is interesting to consider the

level of refinement that would be necessary in a domain based finite difference or finite

element analysis in order to capture similar gradients.

4.3.7 Summary

A new methodology has been presented for the solution of high Reynolds number in-

compressible thermoviscous flow. The convective fundamental solutions that lie at the

heart of these methods model both the diffusive character of viscosity as well as the hy-

perbolic nature of convection. This is accomplished analytically, independent of any dis-
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cretization pattern. Consequently,the resulting boundary elementformulations are quite

attractive particularly for higher speedunconfinedflows.

Solutionsobtainedfor the cylinder comparefavorablywith experimentaldata. Results

presentedin Figures4.32-4.36for the airfoils appearto be reasonable,although theseare

not solutions to the completeNavier-Stokesequations. In particular, all terms of second

order in the perturbation velocitieshavebeenignored. For high speedflows,thesesolutions

canbe improvedby including somecellsin the thin boundary layer surroundingthe airfoils

and in the wake. It is not necessaryto capture all of the intricacies of the flow field in

order to obtain good engineeringinformation on the surfaceof the airfoil.

Further work is still neededin order to producean effectiveanalysis tool. For exam-

ple, severalpromising alternatives for the representationof the nonlinear terms must be

explored, and an intensiveeffort is required toward the developmentof efficientnumerics

tailored for the structure of the convectiveformulations. The latter effort should be di-

rected toward algorithms for massivelyparallel machines,which provide an ideal setting

for boundary elementprocessing.

4.4 Compressible Thermoviscous Flow

4.4.1 Introduction

Several of the previous examples have demonstrated the potential of the convective

incompressible boundary integral formulation for flows in the high Reynolds number range.

However, more generally, at very high speeds, compressibility of the fluid must also be

considered. In particular, shock-related phenomena are not present in the incompressible

formulations and kernel functions. To correct this deficiency, a compressible thermoviscous

integral formulation is presented in this section. It should be noted that, while Oseen

derived most of the fundamental solutions required for the incompressible case, no such

similar solutions are available for compressibility. Consequently, considerable time and

effort was required to derive these new approximate infinite space Green's functions.
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4.4.2 Governing Equations

The conservation laws of mass, momentum and energy for a compressible thermoviscous

fluid can be written in the following form

Ovi Dp
+ ¢ = 0 (4.49a)

P-oxi Dt

, 02vj OZvi Op Dvi
(,_ "+ ]2)_ "t- [.I-_XjOXj OX i P-'-'_- + fi = 0 (4.49b)

020 DO Ovi

k-=--------_--_Ox_Oxj- pce--_ -P_x/+ ¢ = 0 (4.49c)

where ¢ is a mass source and ,_ is a second viscosity coefficient. All other quantities are

defined in Section 4.2.2. Reference values for each of the primary variables are introduced

in an effort to produce a linearized differential operator. Thus, let

vi = Ui + ui (4.50a)

v = po+ p (4.sob)

0 = 0o+ # (4.50c)

P = Po + ,5, (4.50d)

in which u_, po, 0o, and po are constant reference values, and ui,p, 0 and _ are the perturba-

tions. Plugging these definitions into (4.49) produces, after some manipulation,

Oui Do_
+ ¢' = 0 (4.51a)

-Po Ox_ Dt

• 02uj 02ui d_ Doui i

(A + #)_ + p_-xjOx j Oxl Po"-_ + f_' = 0 (4.51b)

k 02_ DoO ¢,
OxjOxj - poC_'--_ + = 0

(4.51c)

where ¢', f,_, and ¢' are now modified body mass sources, forces, and heat sources. Also, in

(4.51),

Do 0 0 (4.52)
Dt - Ot + U_-_z_"

62



A setof approximatefundamentalsolutionsto (4.51)weregivenin the previousannual

report (Dargush and Banerjee,1989c). However,thosesolutionshad two major deficien-

cies. Firstly, the phenomenonof shockwas not portrayed as expectedfrom a physical

standpoint, and secondly,the order of the kernelsingularities wastoo high.

During the current year, thesefundamental solutionswereabandoned.Instead, atten-

tion wasredirected toward idealizing the physical processasa combinationof vortical and

dilational motion. The vortical componentis dominated by viscosity and convection,and

is identical for both compressibleand incompressibleflows. On the other hand, the dilata-

tional componentmust respondelastically within a convectivemedium. Viscous damping

is alsopresent.

Theseconsiderationslead to a redevelopmentof the massconservationequation exclu-

sively in terms of pressure.The resulting governingequationsbecome

c2 02p Do (92P D°2P+ l-l' = 0 (4.52a)

. a2uj c92ui dp Doui /
P°--b-i (4.52b)

020 Do_ (4.52c)
k oxjOzj poc_--ffi- + ¢_ = 0

where c is the speed of sound.

4.4.3 Fundamental Solutions

The steady two-dimensional infinite space fundamental solutions of (4.52), derived by

Shi (1991), are presented in Appendix B.5. Since the algebraic form of these kernels is so

complicated it is best to examine the behavior graphically. For this exercise, a forty-by-

forty grid of sampling points was generated as shown in Figure 4.37. The source point is

fixed at the origin, located as the central point in the grid.

First, the component Gu is plotted for various free stream velocities, expressed in

terms of Mach number, in Figure 4.38. (Recall that Gll is the velocity in the a_-direction

at the sampling point due to a unit point force in the x_-direction at the origin.) The
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responsehas some similarity to that for incompressible flow displayed in Figure 4.20. As

the magnitude of the free stream velocity increases, a pronounced sense of flow direction

becomes evident with the nonzero response concentrating in a narrow band ahead of the

applied force. However, the response is always continuous, and there is a gradual evolution

from the elliptic form at low velocity to the near-hyperbolic behavior in quickly moving

streams.

On the other hand, the character of Gpp, representing the pressure response due to a

unit source, is much different. At a zero Math number, the pressure is radially symmetric

as seen in Figure 4.39a. Increasing the Mach number to 0.9 produces a transition to

the, by now, familiar convective form. However, at M = 1, the field suddenly becomes

singular. Figure 4.39c shows a distinctive Math cone at M = 1.1. It should be noted that

the analytical kernels of Appendix B.5 produce absolutely straight lines defining the cone.

Unfortunately, the graphics package is unable to accurately portray the discontinuity. As

the Mach number increases further, the included angle of the cone decreases. The response

at M = 8 is displayed in Figure 4.39d.

Finally, Figure 4.40 shows the coupling term Glp, which measures the velocity in the

xl-direction due to a unit source. This term also exhibits the shock-related Mach cone,

however, now there is additionally evidence of some viscous damping of the response.

4.4.4 Integral Representations

The formal appearance of the governing integral equations for steady compressible

thermoviscous flow is very similar to that provided in Section 4.3.4. Specifically, let

fs u,

where now

f'={f; f_ a' ¢'].
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The major differenceis, of course,in the kernel functions Gov_ and Y_0.u

4.4.5 Summary

New fundamental solutions were derived for compressible thermoviscous flow during

this past year. The two-dimensional steady form is given in Appendix B.5, however solu-

tions were also obtained for the transient case, and for three-dimensional domains. The

contour plots of Figure 4.38 through 4.40 suggest that this latest effort has produced

physically meaningful kernel functions.

Although the numerical implementation of the compressible formulation has not yet

been undertaken, a couple of characteristics of the boundary element approach should be

noted. For high speed flows, the nonlinearities will once again be concentrated in a thin

layer near the surface and in the wake. Thus, all of the discussion concerning high Re

incompressible flow is valid here as well. Furthermore, with compressibility comes the

hyperbolic phenomenon of shock. In a boundary element approach, the discontinuity can

be captured analytically through the fundamental solution. It is not necessary to use a

mesh to model the, generally unknown, location of the shock front. This is a distinct

advantage for boundary elements over the domain-based methods.

65
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FIGURE4.3 - INTEGRATIONSUBSEGMENTATION
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FIGURE 4.4a - CONVERGING CHANNEL
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FIGURE 4.7
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FIGURE 4.9
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FIGURE 4.14 - DRIVEN CAVITY FLC_

,,,,,_,,,, ...I ..... - -- -_._.hi)l'.
.,I I I I | f ! / I / I / J .... \ \ 'Ill

'' ' t / / " " - --'r'-_'"_ '\[llll_
[,,111]1 I / //I/. ....... ,. ..... I
., J I I / / .. .. _ . , \_llllll
,,llllllllll/I... ... _ 1 IPt '1,
' ! --" _ It I,,,ft ',--,, ,lji,,,,,,,,,,,,,,,, .... Ill
, I I l , , I', I iI_lr_lll,'

I I I 1 ,t,t ,,,,,llIl I I I , , , .... , ,,, ,,_,,_,t,,,

,,,I111t% % \ \ \ \ ,, . . _ 1 7"7 i,,

, _ \ \ \ . _ F,'5"5i/,1/,17, t',.
.,, _ _\\\ \\\\\-...._ .. /. t I
. x \ \ ,, ., _-_ ""//7/11/_''

x \ \ ... -.. _ ","i"i'///I '

---I/// I ii i • , '

r . .

• . . : • , , : .....

a) Re =400

, • % l i /" /

.I I I ll// ///i/ ....

I , _¢ ¢ / ..... " '"'i _

"'_ I I I/"_-'_ - _"_'\\_I 'l
, 1 / I I I " _ - -. ,. \ _ 1

.,,t////////ll: ...... " " \ x_,ll I'

..,,111.,i 11 Ill/''l , , ..... ,''_ I Jill], I ,i'.,,if I I' I I I I , , ,

I ' I /i1"' I I 1 11 I
, I 1 , , # 1 ,.,, I 1'1' I 'l _ _ ,, ,

,,,,ll\\\\\\\\\.. . _ ,
-_ .,,, /,t,1_, ,

, _ \ \ \ \ .. - I//,/I '

• , ,, \ \ .,. -- I///lli •
-- "" i .i I t •

t / l

• ; • . : - : - ,:. - ,:. - ; - : .... :,

b) Re =i000

76



.#

L9

_J
I,I
fz_
0

Z
0
l-q

L9
W
rY

FF

O
I,

>-
I--
I--I
:>
El:
U

Z
W

FK
D

W

H
LI_
O
FF
EL

>-
I--
I.-I
U
0
_J
W
>

! I I

• • • e

(_

e

(D
I.n

L._

I"

I"

A

I

(_

I
ID

Ln

II
X

+_

>--

H

U
0

W
:>

_J
IT

0
N

FF
O
Z

77



,d
r.q

rO
H

_J
LJ

0
7 @

@

0

L_
bA
n." rY

W @_)
J
L9 bJ
Z /
I--t b-t

U] S
O

I rY
EL

>-
>-

C_ U
U O

/
Z I,I
bJ _>
:>

rY

@

\

r

-- E

CO "0 -0
0"1 _ rg

,.-, _ Cl

_ _J J

CD CD

._c W w
_ Ill b

X 0

0

I I I

I..n _ un

i..m

f.,,

@

i...i'n

I'

N •

I

i.m
r-,.

I

C_
i

I

b9

d
tl

X

>.--
I--
I-4

L)
O
_J
Ill
:>

_g
C_
b-
Z
O
N
H

ry
o
I

78



r.,

:::>

Z
F._
_>
I--4

I

,--I

r._

{D

t . . \
_111tl , , o . ,

/

N. • " " "

,\,, ....

\\_, • .

/ f ' ...... ' II

"''_ ......... • .............. I
C_E

• .i ........... i

-:-_-:-:-:-:--- : - : . : • :
.--'4 ..................

::.:t:! : ! : : " : ' t:: ' : o

,--I

" " ....................... In

.......................... ii,

...... II

':':': " : " : • : " " " : " : _ : : :

!llii: - .........- - -
Jill.' ' " .... -_ \ \
_lJlll ':_ ,, ....... .,,\\\\\\\_

i I • . . \

_0_ , , ",,_\\_,
J I i

I _ '" ' ' ' I I I 1I1! I I!1tl ,_,,
...... • , _l_,

.... 1t/1111 I

*' '' I

t _
."..... : ......... 7--..:. :. : ,I

II,i.t ........ "

• o ..................

•:.2- :. :. :. :.. : . I .._

79



_0
u 0

_ u U./
LL

/t

/
/

(9

ii

g

0

co

t_

¢0

8O



FIGURE 4.19a

COMPONENT GTT

INCOMPRESSIBLE CONVECTIVE I_ERMOVISCOUS FLOW (RE = 0.0)

.541- A

.449 - []

.358= C

.266 = O

.174 . E

.0825 = F

-.00929 = G

FIGURE 4.19b

COMPONENT GTT

I--X

INCOMPRESSIBLE CONVECTIVE THERMOVISCOUS FLOW (RE = 10.0J

.370 = A

.313 - B

.256 - C

.199 = D

,142 = E

.0853 = F

.0284 - G
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FIGURE 4.19c

COMPONENT GTT

INCOMPRESSIBLE CONVECTIVE THERMOVISCOUS FLOW (RE = 100.0)

.154 = A

.130 = B

.106- C

.0827 = D

.0590 = E

.0354 = F

.0118 = G

FIGURE 4.19d

COMPONENT GTT

INCOMPRESSIBLE CONVECTIVE THERMOVISCOUS FLOW (RE - 1000.0,)

.0519 = A

.0439 - B

.0359- C

.0279 - D

.0200 = E

.0120 = F

.00399 = G
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FIGURE 4.20a

COMPONENT G11

INCOMPRESSIBLE CONVECTIVE THERMOVISCOUS FLOW iRE = 0,0)

.346- A

.293- B

.240 l C

.187 - D

.133 - E

.0600 = F

.0266- G

FIGURE 4.20b

COMPONENT G1

I

INCOMPRESSIBLE CONVECTtVE THERMOVISCOUS FLOW (RE - 10.0)

.249- A

.210 = B

.171 - C

.133- D

.0936- E

.0548 = F

.0159 - G
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FIGURE 4.20c

COMPONENT G11

I_X

INCOMPRESSIBLE CONVECTIVE THERMOVISCOUS FLOW (RE - 100.0)

.121 = A

,102 = B

.0826 = C

.0634 = D

.0441 = E

,0249 = F

.00566 = G

FIGURE 4.20d

COMPONENT GI 1

INCOMPRESSIBLE CONVECTIVE THERMOVISCOUS FLOW (RE = 1000.0)

.0469 = A

.0394 = B

.0320 = C

.0245 - D

.0171 = E

.00959 = F

,00214 = G
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FIGURE4.21
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VISCOUS BURGERS PROBLEM

Oseen versus Stokes Fundamental Solutions
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FIGUP.E4.25
FI/3WO'v--/RA CYLI[_DER
VELOCITYVECIORSATRe = 40
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FIGURE 4.27a FULL CYLINDER (ANGLE OF ATTACK = 0O)

FIGURE 4.27b FULL CYLINDER (ANGLE OF ATTACK = I0 O)
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FIGURE 4.32a

TEMPERATURE .875 = A

.625- B

.375 = C

CONVECTIVE THERMOVISCOUS FLOW ( RE,PE -10, ANGLE - 0 )

.125- D

FIGURE 4.32b

TEMPERATURE
.875 = A

.625- B

.375- C

CONVECTIVE THERMOVISCOUS FLOW ( RE,PE -100, ANGLE - 0 )

.125- D
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FIGURE 4.32c

TEMPERATURE
.875 • A

.625. B

.375- C

i--X

CONVECTIVE THERMOVISCOUS FLOW ( RE,PE =1000, ANGLE = 0 )

.125 • D

figure 4.32d

TEMPERATURE
.875 - A

-- g

A 14 A ,., A

.625,,, B

.375 - C

CONVECTIVE THERMOVISCOUS FLOW ( RE,PE -10000, ANGLE - 0 )

.125- D
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FIGURE 4.32e

TEMPERATURE
.875- A

.625- B

.375 = C

i--X

CONVECTIVE THERMOVISCOUS FLOW ( RE,PE -1000, ANGLE = 30 )

.125- D
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FIGURE 4.33a

IVELOCITYI
.B75- A

.625 = B

.375 = C

CONVECTIVE THERMOVISCOUS FLOW ( RE,PE -10, ANGLE - 0 )

.125- D

IVELOCITYI

FIGURE 4.33b

.875 = A

.625- B

.375- C

--X

CONVECTIVE THERMOVISCOU$ FLOW ( RE,PE -100, ANGLE - 0 }

.125- D
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FIGURE 4.33c

IVELOCITYI
.875 • A

.625 - B

.375 = C

--'X

CONVECTIVE 7HERMOVISCOUS FLOW ( RE,PE -1000, ANGLE - 0 )

.125 - D

FIGURE 4.33d

IVELOCrI'YI .875 = A

.625- 6

.375 = C

CONVECTIVE THERMOVISCOUS FLOW ( RE,PE -10000, ANGLE - 0 )

.125= D
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FIGURE 4.33e

IVELOCITYJ
.875 - A

.625. B

.375 - C

.125 = D

CONVECTIVE THERMOVI$COUS FLOW ( RE.PE -1000. ANGLE - 30 )
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FIGURE 4.38a

COMPONENT G11

COMPRESSIBLE CONVECTIVE THERMOVlSCOUS FLOW (M - 0.0)

1.99- A

1.93 = B

1.86- C

1.80 = D

1.73 = E

1.67 = F

1.60= G

FIGURE 4.38b

COMPONENT G11

I--X

COMPRESSIBLE CONVECTIVE THERMOVISCOUS FLOW (M = 0.9)

.149 - A

.126 = B

.103 = C

.0803 = D

.0574 = E

.0344 = F

.0115 = G
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FIGURE 4.38c

COMPONENT GI I

COMPRESSIBLE CONVECTIVE THERMOVISCOUS FLOW (M - 1.1)

.138 = A

.117 = B

.0953 = C

.0742 - D

.0530- E

.0318 = F

.0106 = G

FIGURE 4.38d

COMPONENT G11

I_X

COMPRESSIBLE CONVECTIVE THERMOVISCOUS FLOW (M - 8.0)

.0569- A

.0482 - B

.0394 - C

.0306- D

.0219- E

.0131- F

.00438- G
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FIGURE4.39a

COMPONENT GPP

COMPRESSIBLE CONVECTIVE THERMOVISCOUS FLOW (M - 0.0|

-.192 - A

-.283 = B

-.375 = C

-.467- 0

-.559 = E

-.650 = F

-.742 = G

FIGURE 4.39b

I

COMPONENT GPP

COMPRESSIBLE CONVECTIVE THERMOVISCOUS FLOW (M - 0.9)

.I

S

-.274 = A

-.496 = B

-.718 - C

-.940- D

-1.16 = E

-1.38- F

-1.61 = G

ii0



FIGURE4.39c

COMPONENT GPP

COMPRESSIBLE CONVECTIVE THERMOVISCOUS FLOW (M - 1.1)

1.01- A

.857- B

.701 = C

.546 = D

.390 = E

.234 = F

,0779 - G

FIGURE 4.39d

COMPONENT GPP

COMPRESSIBLE CONVECTIVE THERMOVISCOUS FLOW (M = 8.0)

,0585 = A

.0495 - B

.0405 = C

.0315 = D

.0225 = E

.0135 = F

.00450- G
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FIGURE4.40a
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COMPONENT GI P
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1
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t'
/
/A

/A

.0182 - A

.0160 - B

.0139 - C

.0117 - D

,00960 - E

.00746 - F

.00531- G

COMPRESSIBLE CONVECTIVE THERMOVISCOUS FLOW (M - 0.9)
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FIGURE4.40b

COM PONENT G 1P

COMPRESSIBLE CONVECTIVE THERMOVISCOUS FLOW (M = 1.1)

-.0000704 = A

-,00159 = B

-.00310 = C

-.00462 = D

-00613 = E

-.00765 = F

-.00916 = G

FIGURE 4.40c

COMPONENT G1P

COMPRESSIBLE CONVECTIVE THERMOVISCOUS FLOW (M - 80)

.0000443 = A

.0000270 = B

.00000965 = C

-.00000767 = D

-.0000250 - E

-.0000423 = F

-.0000596 = G
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5. FLUID-STRUCTURE INTERACTION

5.1 Introduction

In the previous two sections, boundary element formulations have been developed sep-

arately for a thermoelastic structural component and for a thermoviscous fluid. However,

the ultimate goal of this ongoing grant is to develop a single computer program to deter-

mine the temperatures, deformation and stresses of a component exposed to a hot gas flow

path, without the need for experimentally determined ambient fluid temperatures and film

coefficients. While further work is still required for the fluid phase, sufficient progress has

been made to demonstrate the utility of the overall concept. Consequently, in this section,

problems of fluid-structure interaction will be examined.

5.2 Formulation

The Geometric Modeling Region (GMR) provides the vehicle for achieving interaction

between the solid and fluid. Recall that in Section 4 different fluid formulations were

employed in different GMRs. Now, some of the regions will use the thermoelastic solid

boundary element model, while others utilize one of the thermoviscous fluid formulations.

Compatibility must be enforced across all GMR interfaces, no matter which model is used

for adjoining regions. A boundary element approach is ideal for these problems, since the

integral equations are written directly on the interracial surfaces.

For demonstration purposes, consider the problem of flow past a blade as sketched in

Figure 5.1. The blade itself is labeled GMR1, and is modeled as a thermoelastic solid.

A boundary mesh is all that is required for this structure. Surrounding the blade is a

thin layer of cells. This is a nonlinear thermoviscous fluid region, named GMR2, in which

the complete Navier-Stokes equations are solved. GMR2 is enclosed by inner and outer

surfaces composed of boundary elements. The mesh utilized for the inner surface of GMR2

matches that employed for the blade in GMR1. Finally, the outer region GMR3, which

extends to infinity, employs the convective Oseen kernels. The boundary element model
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for GMR3 consistsmerely of the surface elements required to describe the interface to

GMR2. Since no cells are present, the nonlinear volume and surface integrals are ignored.

Thus, an approximation is introduced. However, as mentioned previously, outside of the

boundary layer and wake these nonlinear contributions are negligible. (Recall that each

region is the counterpart of a substructure or superelement commonly used in the finite

element technology, however GMR1 and GMR3 do not require any volume discretization.)

The interface between GMR2 and GMR3 poses no particular problem. Total velocity

and temperature from both regions are equated at each interface node, while the tractions

and flux must be equal in magnitude but of opposite direction. The latter conditions for

the compatibility of traction and flux are also true for the solid-fluid interface between

GMR1 and GMR2. Total temperature must, of course, be equal on this interface as well.

However, the solid integral formulations of Section 3 are written in terms of displacement,

while those for fluids use velocity. Consequently, a change in variable must be introduced

to ensure complete interface compatibility. For that purpose, consider the following matrix

form of the integral equation for a thermoviscous fluid:

-- '}-  oo° •
The contributions from nonlinearities and past time steps are all contained in R_, as are

any terms associated with the translation from perturbed velocity to total velocity v_.

Meanwhile, a similar expression written for a thermoelastic solid becomes

•. T Ui T _i Rj

c00 ka0j

where ui is the total displacement. This must be rewritten in terms of total velocity vi,

where

Oui

After invoking properties of the convolution integrals that are present in the original inte-

gral equation (3.2), the appropriate representation for the solid can be written

,. . T Vi 0 T Fij 0 ]T v,
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in which di_, G0j and F0j are now modified kernel functions and /_ is the corresponding

right-hand-side contribution. However, at this point, the fluid formulation (5.1) and the

solid formulation (5.4) are completely compatible, and are in an ideal form to solve quite

general interaction problems.

5.3 Numerical Implementation

The boundary element code, GPBEST, was generalized so that any combination of

solid and fluid regions could be accommodated. Also, the modified thermoelastic kernels

of equation (5.4) were implemented. The entire GPBEST input is free format and keyword

driven. Output is provided on a region-by-region basis, and thus contains only informa-

tion pertinent to the region type. Displacements, temperatures, stresses and strains are

detailed for solid GMRs, while velocities, temperatures, stresses, pressures, strain rates

and vorticities are output for fluid regions. In all cases, a complete PATRAN interface is

available, so that any quantities can be plotted.

5.4 Numerical Examples

5.4.1 Introduction

In this subsection a couple of. ex_nples will be presented to highlight the attractiveness

of the present coupled boundary element approach. Flow past a thick-walled cylinder and

an airfoil are considered. Both steady and transient conditions are examined, and a number

of additional features of the GP-BEST implementation are explored.

5.4.2 Steady Response of a Thick Cylinder

For the first example, a thick-walled stainless steel cylinder rests under plane strain

conditions in a stream of hot gas. The cylinder has an outer diameter of 1.0 in. and a

thickness of 0.125 in. The inner surface of the cylinder is maintained at a temperature of

0°F, while the gas temperature in the free stream is 1000°F. The following thermoelastic

properties are assumed for the solid cylinder
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E = 29. x 106psi, v = 0.30

a = 9.6 x 10-6in./in.°F

k = 6.48 in.lb./sec.in.°F

p = 7.34 x 10-41b.sec.2/in. 4 cc = 3.83 x 105in.lb.in./lb.sec.2°F.

Additionally, the thermoviscous properties of the hot gas are taken as

p = 5.30 x 10-91b.sec/in. 2

k = 7.28 x lO-3in.lb./sec.in.°F

p = 3.69 x 10-Slb.sec.2/in. 4 cv = 9.49 x 105in.lb.in./lb.sec.2°F.

Fluid velocities of 144 in./sec., 1440 in./sec, and 14400 in./sec., corresponding to Reynolds

Numbers of 103, 104 and 105, are examined. In all cases, the hot gas flows from left to right,

and only the steady response is considered.

At Re = 1000, the maximum temperature in the cylinder is only 98°F, and the peak

compressive axial stress is 36 ksi. However, when the fluid velocity is increased to attain

an Re = 10,000 a much more significant response is obtained. The temperature contours

are shown in Figure 5.2a, the deformed shape is depicted in Figure 5.2b, and Figure

5.2c illustrates the axial stress distribution. It should be noted that in Figure 5.2b the

deformation has been scaled by a factor of 100. The effects of convection are quite evident

in all three diagrams. With Reynolds number increased to 100,000 these effects become

even more pronounced, as seen in Figures 5.3. Now the peak metal temperature has

reached 918°F.

5.4.3 Airfoil Exposed to Hot Gas Flowpath

In this final example, an NACA0018 airfoil with an internal cooling passage is exposed

to the flow of a hot gas. The boundary element model for the airfoil is shown in Fig-

ure 5.4. Each dash represents an individual quadratic surface element. Throughout this

problem, the outer gaseous region is modeled as a linear steady convective domain. Thus,

a boundary-only exterior GMR is employed for the fluid. The hot gas at 1000°F flows
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from left to right, while the inner surface of the airfoil is maintained at 200°F. Material

properties from the previous example are once again used to characterize both the solid

and fluid.

For the first set of investigations, the behavior of the airfoil is determined under steady-

state conditions. Figure 5.5a displays the deformed shape at a Reynolds number of 1000

(based upon chord length). The solid line represents the final deformed shape, except

that displacements have been scaled by a factor of twenty-five. Meanwhile, Figures 5.5b

and c present the profiles of temperature and axial stress, respectively, along the upper

surface of the airfoil. At this relatively slow speed flow, the airfoil is only effected near

its leading edge. More significant response is shown in Figures 5.6a-c for Re = 10,000 and

Figures 5.7a-c for Re = 100,000. In the latter case, the temperature at the stagnation point

is nearly that of the free stream. All three cases considered so far have assumed an angle

of attack of 0 ° with respect to the x-axis. Consequently, the response of the upper and

lower surfaces is identical. Next, the angle of attack (a) is modified to 5 ° and 10 °. Results

for these cases are shown in Figures 5.8 and 5.9, respectively. Considerable asymmetry

between upper and lower surfaces is now evident, although peak values of temperature and

stress are essentially unaffected.

Thermal barrier coatings are often employed to reduce the metal temperatures and

stresses in hot section components. The benefit of such coatings can easily be evaluated

with the present boundary element formulation. Consider, for example, a coating material

with thermal conductivity k = 0.50 in.lb./sec.in.°F sprayed to a thickness of .0095in. This is

equivalent to an interracial thermal resistance of .021 see.in°F/in.lb., which can be specified

on the fluid-to-solid GMR interface. Results are displayed in Figure 5.10 for Re = 100,000

at c, = 10°. Peak airfoil temperature is reduced from 976°F to 738°F by introducing this

particular thermal barrier coating.

Finally, it is of considerable interest to examine the transient response of the airfoil.

At time zero, the airfoil is in thermal equilibrium at a temperature of 200°F. Suddenly,
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it is subjected to the hot gas stream with Re = 100,000 and a = 10°. The response of the

upper surface at 1 msec., 2msec., 5 msec., and 10 msec. is shown in Figures 5.11-5.14.

For this transient case, the peak stress occurs slightly offset from the tip of the airfoil.

Additionally, the stress _vv reaches a maximum at approximately 2 msec., while a,, and

the temperature continue to climb to their steady-state values. This is true of the axial

stress only because of the assumption of plane strain. In a full three-dimensional analysis,

_r,, would also have a higher peak during transient state.
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FIGL_RE5.2 - STEADYRESPONSEOFA THICKCYLIND_,

a) Temperature

85[[li[L811I_Ol_fl tltI[KlILle[It lie : IOOO_.O0- [IIERR]

(Re = i0,000)

900. R

800. 8

79_. [

GGO. 0

SOD.: E

400. f

300. G

200.

]00. 1

/
f

b) Defor:ned Shape / _"
/

/
/

/
/
/

I
/

;
l
l

\
\
\
\
k
\
\

115[[IFLOeWUI_ I_ IlliCit rTLIIR (lie : 10090.00- LIIEliXl

121



FIGURE 5.2 - ST-_ADY RESPONSE OF A THICK CYLINDER (Re = i0,_00)

c) Axial Stress
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FiGLTP_E5.3 - STEADYRESPO_SEOFA THICKCYLINDER(Re =100,0O0)

a) Temperature
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FIGURE5.3 - STEADYRESPONSEOFA THICKCYLINDER(Re = 1O0,000)

c) Axial Stress
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FIGURE5.5 - AIRFOIL (STEADY;Re = I000; a = 0°)
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_ 0°FIGURE 5.6 AIRFOIL (STEADY; Re = i0,000; _ = )
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figure 5.7 - AIRFOIL (ST_J_DY; Re = !00,000; _ = 0 °
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FIGURE 5.8b-e - AIRFOIL (STEADY; Re= i00,000; _ = 5 ° )
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FIGURE 5.9b-e - AIRFOIL (STEADY: Re = !00,000; a = i0 °)
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6. BEM FOR RELATED PHYSICAL PHENOMENA

During the course of the investigation of the hot fluid-structure problem, a number of

related technologies have been opened to analysis by the boundary element method. In this

section, several of these potential applications are discussed. Most of the advancements

depend upon the development of new fundamental solutions. For each case, a systematic

procedure can be applied to obtain the required fundamental solution. This same procedure

was developed and refined during the derivation of all of the kernel functions presented in

Sections 3 and 4.

Perhaps the most interesting of these applications involve either moving sources or

moving media. An example of the former kind is the determination of residual stresses in

welds. As part of the NASA/HOST program, the boundary element code BEST3D was

developed for the inelastic analysis of structures. Included in that code are a number of

elastoplastic and viscoplastic material models that would be suitable for the weld problem.

However, the temperature in the weld and adjoining structure is not known a priori, and

a transient heat conduction analysis is required which accounts for the speed of the weld.

The desired integral formulation for this thermal analysis is quite similar to that discussed

for convective flow in Section 4. In addition, the fundamental solution that is needed for

moving heat sources has already been derived as part of the present work. The other

major advancement in boundary element technology that is required to solve the weld

problem involves the development of more sophisticated nonlinear solution algorithms. It is

envisioned that the modified Newton-Raphson schemes, employed for thermoviscous fluids,

will provide the basis for that development. It should be noted that similar problems, such

as frictional heating, grinding, and machining could also be studied utilizing the moving

heat source approach.

The hot viscous fluid formulations presented in Section 4 are quite general, and conse-

quently, applicable to a wide range of physical processes. For example, the incompressible
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integral equationscould be usedto solvethe flow problem in injection molds, or the con-

vective formulations could be applied to investigate the cooling of electroniccomponents.

Furthermore, somerelatively minor extensionswould provide significantbenefits. The in-

clusion of a buoyancy term basedupon the Boussinesqapproximation, would permit the

examination of the thermally-induced flow in lakes or the slow heating of a room. The

addition of anextra equation involving the concentrationof a diffusing substanceprovides

the opportunity to investigate the spreadof pollutants in a convectiveenvironment.

As mentionedpreviously,oncethe techniquesfor obtaining fundamental solutionshave

beenmastered,a widerangeof physical phenomenacanbeanalyzedvia boundary element

approach. Recentwork by Kaynia and Banerjee(1990) has focusedon the development

of fundamental solutions for dynamic poroelasticity. Thesesolutions will be utilized in

a BEM (Chen, 1991) for the analysisof soil-structure interaction under seismicloading.

The analogousproblemof dynamic thermoelasticity,which includesthe important caseof

thermal shock,can alsobe solvedwith the sameformulation.

The coupling approachdiscussedin Section5 canbe usednot only to solvethe ther-

moviscousfluid-structure problem, but alsoto investigate flutter. In this case,frequency-

dependent formulation solutions axe required. The infinite spacesolution for periodic

elastodynamicsof solids is well-known (Banerjeeand Butterfleld, 1981),while that for a

linearizedOseenfluid could be derived. The frequencydomain BEM analysiswould be an

extensionof the work donefor the NASA/HOST program and containedin BEST3D.

Therecurrently existsno satisfactorynumericalnor analytical techniquesto effectively

dealwith all of the physical phenomenamentionedin the precedingparagraphs. However,

asan indirect result of the presenthot fluid-structure grant, boundary elementformulations

and implementationsarenow possiblefor eachcase.
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7. SUMMARY

A new methodologyhasbeendevelopedfor hot fluid structure interaction basedupon

an integrated boundary elementapproach. As a part of this effort, significant advances

havebeenin the analysisof both the solid and the surroundingfluid.

Section3 detailed a boundary-only, time domain formulation for the analysisof ther-

moelasticsolids. Not only doesthis approacheliminate the needfor volume discretization,

it alsopermits the accuratedeterminationof surfacetemperaturesand stresseswhich areof

primary interest in hot sectioncomponents.Thus, this boundary elementmethod is a suit-

able substitute for finite elementsfor this entire classof problems. The two-dimensional

formulation was presentedhere, however three-dimensionaland axisymmetric methods

havealso beendeveloped.

As mentioned previously, most of the effort expendedduring this researchprogram

hasbeen directed toward the developmentof appropriate boundary element methodsfor

thermoviscous fluids. This was necessarybecauseonly rudimentary formulations were

availablein the literature. For slowcreepingflowsa boundary-only method wasdeveloped

for both steady-state and transient problems. In these flows, the nonlinear convective

terms arenegligible. As the fluid velocity is increasedto moderate levels,theseconvective

effects can no longer be ignored. Consequently,volume discretization is required and

the boundary element approachbasedupon Stokesfundamental solutions becomesless

attractive primarily due to the cost of cell integration. However,it shouldbe noted that

the resulting boundary elementsolutions are typically very accurate.

At higher speeds,whenthe convectiveeffectsdominatethe entire problem, it no longer

makessenseto usethe viscous-basedStokeskernels. Instead,Oseen convective fundamen-

tal solutions are employed. As demonstrated in Section 4.3, those new kernels embody

more of the physics of high Reynolds number flows. In fact much of the character of the

problem can be captured with a linear boundary-only analysis. However, if more accuracy
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is desired,volume cells canbe added to the nonlinearportions of the flow field; namely,

the thin boundary layer and the wake. Thesecells basically are used only to correct the

linear solution. It is generallynot necessaryto capture all of the minute details of the

flow in order to obtain the desiredsurfaceinformation, although, for example,there is no

reasonthat turbulence modelscould not be introduced within the nonlinear regions.

For compressibleflows, the correspondingfundamental solutions do not appear in

the published literature, and, consequently,had to be developed. A new set of kernel

functions, derivedduring this past year, werepresentedin Section 4.4. As shownin the

diagrams, thesekernelsexplicitly contain the hyperbolic nature of shock. Consequently,

the boundary elementformulations, basedupon theseGreen's functions, will be able to

model the shock front without the needfor a discretization pattern. This will provide a

significant advantage for the boundary element approach over any of the existing numerical

techniques.

Finally, in Section 5, the boundary formulations for a thermoelastic solid were com-

bined with those of a thermoviscous fluid to create a novel hot fluid structure interaction

capability. Since integral equations are written directly on the fluid-structure interface,

the BEM approach is ideally suited for this class of problems. A couple of examples were

included to demonstrate the att'rac_iveness of this method in terms of model generation

and results interpretation. Additionally, it should be emphasized that all of the numerical

solutions included in this report were obtained on a standard desktop SUN SPARCstation

1.

In light of all of the above developments, it must be concluded that an effective new

approach has been identified for computational fluid dynamics and hot fluid-structure

interaction. However, much additional effort is needed. Some of the required tasks are

outlined in the next section, which defines the future direction of our research effort.
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8. FUTURE DIRECTION

Despite the progress that has been made during the course of this research program,

the present boundary element approach for hot fluid-structure interaction is still primar-

ily limited by the ability to properly model and efficiently calculate the response of the

surrounding fluid. The boundary element formulations for fluids are particularly attrac-

tive at the two extremes of low and high speed flows. At low velocities, the extensive

boundary element technology developed for solids is directly applicable since the problems

are primarily elliptic. In the intermediate range, it is quite appropriate to consider the

combination of methods, with finite element or finite difference methods employed in the

nonlinear regions and boundary elements for the outer linear portions of the flow field.

Some attention will be given to this approach in the coming year.

However, for high speed flows, the character of the response changes. Nonlinearities

are confined to the vicinity of the structure and the behavior becomes more hyperbolic.

Consequently, a purely boundary element approach once again becomes most attractive.

However, the necessary integration, assembly, and solver technologies have never been de-

veloped for this type of system. Instead of the standard family of volume cells, decay func-

tions should be introduced to effectively reduce the volume integration to a surface-based

computation. Furthermore, during all integration, the banded nature of the fundamental

solutions should be recognized. Similarly, efficiencies can be introduced during assembly,

where currently many zeroes are processed. In the solver, advantage must be taken of the

nearly-sequential structure of the system equations. The implementation of these ideas

would result in a very efficient method for high Reynolds number flows, particularly in a

massively parallel computing environment. In fact, the fluid dynamics boundary element

algorithm, including the features outlined above, is ideally suited for that environment,

since it involves a large number of computationally-intensive independent processes.

Additionally, further work is needed on the implementation of the convective compress-
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ible fundamentalsolutions,and the correspondingthree-dimensionalformulations must be

developed.A number of plannedresearchactivities for the comingyearsare listed below,

primarily in chronologicalorder. Of course,the amount of progressthat can be achieved

in 1991will be largely dependenton the level of funding.

Research Plan

• Developmentof a nonlinearboundary layer representationin terms of decayfunctions.

• Implementation of the new convectivecompressibleformulation.

• Developmentof revampedconvectiveintegration algorithms basedupon the nature of

the kernels.

• Investigation of severalmore realistic problemsof hot fluid-structure interaction.

• Incorporation of a nonlinear finite elementregion.

• Restructuring of the assemblyroutines for convectiveflows.

• Developmentand implementationof three dimensional formulations for fluid-structure

interaction.

• Development of a nearly-sequential banded solver.

• Development of massively parallel computing algorithms.
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APPENDIX B.1 -

Kernels for Thermoelasticity

This appendix contains the detailed presentations of all the kernel functions utilized in

the formulations contained in Section 3. Two-dimensional (plane strain) kernels are pro-

vided, based upon continuous source and force fundamental solutions. For time-dependent

uncoupled quasistatic thermoelasticity the following relationships must be used to deter-

mine the proper form of the functions required in the boundary element discretization.

That is,
v2z(x - _) = ao_(X - _, nat) for n = 1

G_z(x - _) = G,_(X - _, nat) -- Ga_X - _, (n - l)At) for n > 1,

with similar expressions holding for all the remaining kernels. In the specification of these

kernels below, the arguments (X -_,t) are assumed. The indices

i,j,k,l vary from 1 to d

a,/_ vary from 1 to (d + 1)

0 equals d + 1

where d is the dimensionality of the problem. Additionally,

z_ coordinates of integration point

_ coordinates of field point

Yi = xi - _i r 2 : YiYi.

For the displacement kernel,

1 I [(UiYj_ 4u)Inrlja,j - 8_ u(1- _) t - (6,j)(3 -\r 2 ]

Gio = 0

aej = _ k(_ + 2.)
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whereas, for the traction kernel,

F, j l X [_(2yiyjyknk_ (6ijykn+yinj)41rr (1 - u) \ r3 ,/ - _ (1 - 2v)

In the above,

F/o=O

1 Yknk

P

V- (c_)l/2

k

pc_

E_(_) = L _ _-'d_

k(v) =e -_/4.

For the interior stress kernels,

2u_, 6 OC_l (aGe_ aG_ _
E_ - i--_ _J-_F+ _ k o_j + -_$_} - _6_a_o

OF , (oF , °
Dr30 - 1 --2v oij-_z + # \ O_j + O_i }

where

OG_j
-- 8_rr #(1 _- u) L\ 7_ r
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_--_ - 4_ 2 (1 - v) - -- _ r_

+

6ikYJ2-Yl_'_ f_(V) - ( 2_isykyt m

(2yjy_, _jk._,)].(,7)l

6ijnk -+" r2

]_(_) = 2

]2('1) = 1 - 2v

].(v)= i- 2v
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APPENDIX B.2 -

Kernels for Steady Incompressible Thermoviscous Flow

1 [YiYj _ 6idln r]

Fij = 1 "2ylyjyknk ]
2_r r3 J

aGij 1 [ 6jk__y___.j.i+ _ikyj _ijyk 2yiyjyk ]
8Xk -- 47rpr L r r r _ J

l [In r]eoo =

Ozk 2_rkr

Yi = xi -- _i

r 2 = YlYl
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APPENDIX B.3-

Kernels for Unsteady Incompressible Viscous Flow

{ }]

F_(_ - X, _) = _ --7--lsl(V) - + &_'yknk {sl(,) -- e -''/4}

2ylyjyknk
,.3 {2s1(,)- e-e/4}]

__ 1 [_ 6ikyj(_- x,_) = _ {_,(,)}+ --7-1_1(,)} - {2e-e/4 _ _1(,)}

2yiyjyknk {2s1(_) - e-'_14}]
r3 J

where

Yi = _i -- Zi

sl(_) = _A_'(1 - e -n2/4)

E,(z)=f2 _d..

Then,
G_({ - X) = Gij(_- X,nAv) for n = 1

C%.(_- X) = C_j(¢- X,.A_) - G_j(_- X, (.- 0A_) for . > I

°c-_hq - x).with similar relationships for F_'_(_- X) and o=,,
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APPENDIX B.4-

Kernels for Steady Convective Incompressible Viscous Flow

G0- 2zp LkU'J

( OG kj OGo '_

where
Yi : Xi -- _i, r 2 -- YiYi

c = _ U2 = U_Ui
p

a = Ur/2c

¢ = -1.(_) -_-_'go(_)

Ozi
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APPENDIX B.5 -

Kernels for Steady Convective Compressible Thermoviscous Flow

G_j = 4r(A l{6_jeUku_/2'TK°(_)--_(df_jUkyk-U_yj-UjYi)[_r-eU_/2'TKl(_)]}+2#) U

= 2G_p G_Ip+ G,p

G_p - _-_po_- _ U1 |n x/(UkYk) 2 q- v2r 2 -- U 2 tan -I ¢ ¢_Uk..yk_k v(U_u2 - u_y_)

+ H(U._._ipjS_-c) [U_H(Ukyk - v,')

G12p = _'p-_O" _ _ U2 In k/(Ukyk) 2 q- v2r 2 -- UI tan -1 \v(Uiy'_l :_/,l#2)]J

+ H(U.fTjff_-c) _U2H(U,<_,k- v,')

G_%= 1 + -07( _y,_yk- u2y_) _,,2,_2rrPo U2 UieUhu_/ZnKo Ur 1 U eU'y_f/UrKo(_)d_

H(c-U) [c Ukyk ]_lH(U_e)CH(U_y__vr)Gpp = 2r In _(UkYk) 2 q- v2r 2 -- r_(ukYk) 2 + v2r2

,_= (_ + 2_,)/_o, _, = #1_o, ,: = _l_oc_

v_ = Ic_- U_l
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